Microprocessor Solutions for
Datacommunications and
Computer Peripheral Applications

N 2iLa5

Z380™

Microprocessor
Unit

User's Manual

Thank you for your interest in the Z380™ CPU (Central Processing Unit) and its associated
family of products. This Technical Manual describes programming and operation of the
Z380™ Superintegration™ Core CPU, which is found in the 2380 MPU (Microprocessor Pro-
cessing Unit), and future products built around Z380™ CPU core. For the external interface
and detailed descriptions of the on-chip peripherals for each Superintegration device,

PREFACE

please refer to individual product specifications.

This Technical manual consists of the following Sections:

1.

Z380™ Architectural Overview
Chapter 1 is an introductory section covering the key features and
giving an overview of the architecture of the device.

Address Spaces

Chapter 2 explains the address spaces the Z380 CPU can handle.
Also, this chapter includes a brief description of the on-chip regis-
ters.

Native/Extended Mode, Word/Long Word Mode of Operation,
and Decoder Directives

This chapter provides a detailed explanation on the Z380's unique
features, operation modes, and the Decoder Directives.

Addressing Modes and Data Types
Chapter 4 describes the Addressing mode and datatypes which the
Z380 can handle.

Instruction Set
Chapter 5 contains an overview of the instruction set; as well as a
detailed instruction-by-instruction description in alphabetical order.

Interrupts and Traps
Chapter 6 explains the interrupts and traps features of the Z380.

Reset
Chapter 7 describes the Reset function.

LS

NS

1]
uhed
=
]
b
=
Q
(-~
S
@
=
s
4

TABLE OF CONTENTS

Chapter 1 Z380™ Architectural Overview

1.1 INEFOTAUCTION ittt b et bbbt s sbe e e nae e
1.2 CPU Architecture.......
1.2.1 Modes of Operation
1.2.1.1 Native Mode and Extended MOdEccoueveeiiieiiiiiieniiec e 1-3
1.2.1.2 Word or Long WOrd MOGEceeviviiiiiiiieeiie et 1-3
1.2.2 AQAIESS SPACES ..oiveviieiiitieieit ettt ettt sbe ettt sttt e b et esae sttt eeneennee 1-3
T.2.3 DAL TYPES .vviiiieiieieiiiii st ettt et b e sttt ettt e e et e st e eat et e s bt e bt aseaste bt st et e ebeeb bt et e sreeeeenee 1-4
1.2.4 Addressing Modes 1-4
1.25 Instruction Set............... .o1-4
1.2.6 Exception Conditions.... .1-4
1.3 Benefits of the ArChItECIUIEc.ooueiiiie e 1-5
1.8.1 High TAIOUGNPUL ...ttt snee b e 1-5
1.3.2 Linear Memory AAAress SPACEccceiviviivieriiniieiiine ettt e 1-5
1.3.3 Enhanced Instruction Set with 16-Bit and 32-Bit Manipulation Capability 1-5
1.8.4 Faster Context Switching
1.4 SUMIMIAIY ©evteiteitteiie et et e e et stteaee s bestestesteeseessesaeesbesbeeseeabesetesbaebeeb b b esaesh e s e ek eete st absenbesbaeabbensbarne s

Chapter 2 Address Spaces

21 INTOAUCTION ..ttt et e sire et en et e neereess e ear e e enbe s enresenenes 2-1
22 CPU RegiSter SPACEccvvvveviiieieetiiieeenienie e OO PO PP VPO PTPRPPOPIOt 2-1
2.21 Primary and Working REGISIErScocoieiiiiiieccececi e 2-3
2.2.2 INABX REGISIEIS ...ttt ettt e e 2-3
2.2.3 INEEITUPL REGISIEN 1oviiiiiiiee e et e et e e 2-3
2.2.4 Program COUNEETccieriieiiriiecenteriesteestesiesite st ese e sttt ee bt ebseste b sieseesitessesbeenbeeeesreennee 2-3
P T = = Yo | Y (] SO OO RSOOSR 2-3
2.2.8 SEACK POINIET ..ottt ettt sb e sb e n e 2-3
2.3 CPU Control REGISIEr SPACEovueiiiiieiiiest ettt ettt 2-4
2.4 MEMOTY AQAIESS SPACEccuiiiieiieiieieieit ettt ettt st s e 2-5
2.5 EXternal 1/O AQArESS SPACEcoveiriiiiiiriirieit ettt sttt ettt ettt 2-6
2.6 ON-Chip 1/O AQAIESS SPACEc.ecuiiiirieiietiiee ettt ettt ettt ettt eb e e eere et 2-6

Chapter 3 Native/Extended Mode, Word/Long Word Mode of Operations and Decoder Directives
3.1 INEFOAUCTION ..ottt ettt s vt et sbe e b b e et e st e b et e s b ebeeseesbeesbeebeebee e
3.2 Decoder Directives..........c.cccoveeeennnee.
3.3 Native Mode and Extended Mode..........c.cccoveveiiincinciienninns
3.4 Word and Long Word Mode of OPErationcccceieieiiiinnenenenicene st 3-3

" 780"

@ 2Ll USER'S MANUAL
5.5.12 DeCOUEr DIFECHVEScviiiviiiii ettt ettt et te e e taeenae e e aaneean 5-17
5.6 Notation and Binary ENCOTINGcervrririniirieieiiiet et 5-17
5.7 EXECULION TIMIE .eieiiiiiiiice ettt e r ettt ebaebsessessesbeebeebeeabeebeerssesseeneeereeans 5-18

Chapter 6 Interrupts and Traps

6.1 INEFOAUCTION ..ottt n e se et e b e et sbenae s 6-1
6.2 {101 T (] o & OSSOSO PPUPRUPTRPON 6-2
6.2.1 Interrupt Priority RANKINGooiriiiiiieciiee et ena e 6-2

6.2.2 Interrupt Control

B.2.2. 1 IEFT, IEF2 .ottt ettt st ettt ene s

B.2.2.2 1, FEXIEBNA ...iiiiiiiiiiiecie sttt ettt ettt ettt sra e e sbe e be b nns

6.2.2.3 Interrupt Enable Register

6.2.2.4 Assigned Vectors Base REQIStErc.ccvivineiieninneeciesiee e 6-3

6.2.2.5 Trap and Break Register

6.3 Trap Interrupt...cc.ooeeieniiecee e,
6.4 Nonmaskable Interrupt
6.5 Interrupt Response for Maskable Interrupt on /INTOcc.coviiiiniienieieeieee e
6.5.1 Interrupt Mode 0 Response for Maskable Interrupt /INTOcoccooveceiniininiinniinicnns

6.5.2 Interrupt Mode 1 Response for Maskable Interrupt /INTOccoeoveveiviiieinenieiceiene,

6.5.3 Interrupt Mode 2 Response for Maskable Interrupt /INTOcccoveveiiveeviiie e,

6.5.4 Interrupt Mode 3 Response for Maskable Interrupt /INTOc.ooevivienincenieneeeeenne,

6.6 Assigned Interrupt Vectors Mode for Maskable Interrupts /INT3-/INT1
6.7 RETTINSITUGTION ...ttt et bbb e st e bt e et e e e ebsstenten

Chapter 7 Reset
71 [aYigoTo [¥Tox (o] o RSOOSR NS P TSRS P PRRRPO 71

Z380™ BENCHMAIK ADPNOLEovivieiiiiiiie ettt b ettt ae et e esa s eseaessesess e asasessessseaseesessasensesesnes 8-1
Z380™ QUESHIONS AN ANSWETSvviveiieeiire ettt ettt steee et er et te et s ebeestestesteebaesbesseesbesaeestsasbesssessesrenns 9-1

Appendix A
Z380™ CPU INSIrUCHON FOIMELSviiviivicieieiiecricte ettt et et ete et ereerbe s e ensenseereebesssesenns A-1

Appendix B
Z380™ Instructions in AIPhabetiC OFAENoiviiiiiiiiiiireccciee e b sa e b e esae s aseaane B-1

Appendix C
Z380™ [nstruction inN NUMEIHC OFAETcoviieiiicie ettt sttt st e s ereeesbeeenaeas C-1

Appendix D
Instructions Affected by Native/Extended Mode, and Long Word Modecccooeiiiiiiiiiiienieeannn, D-1

Appendix E
Instructions Affected by DDIR IM INSITUCHONS ...cveiviiiiiiiieirecre ittt cre ettt sre v v E-1

. 2380™
_@ 2iLaL USER'S MANUAL
FIGURES
Chapter 1
Figure 1-1. Z380™ CPU RegiSter AIChIECIUIEiiiiviiiiieie sttt sbe st sbr e staeraens 1-2 .
Chapter 2
Figure 2-1. Register File Organization (Z380™ MPU)ccooiriiiiiieiiinie et e 2-2
Figure 2-2. Bit/Byte Ordering CONVENLIONSccoiueriiieriiriiiiesesieeie sttt et etest bbbt sie e e sbe et sae s 2-5
Chapter 3
Figure 3-1. Z380™ CPU Operation MOGESccceriiiieiininiiiieiinee ettt et et 3-1
Chapter 5
FIQUre 5-1. FIag REQISIEL ..ottt sr bbb bbb st 5-3
Figure 5-2. Select Register
Chapter 6
Figure 6-1. Interrupt ENable REGISErcoviiiiiiii e e
Figure 6-2. Assigned Vectors Base Register
Figure 6-3. Trap and Break REQISEroiiiiiiiiie e

N 2iLa5

Z380™ Architectural Overview n

D

Vi

R

SRR
;JJ\.‘;\..J

S
O IRV

mn 3
#53
45
S
e
P
Y
S
[y

x;)
M T

%

[T

N 2iLa5

USER's MANUAL

CHAPTER 1
Z380™ ARCHITECTURAL OVERVIEW

1.1 INTRODUCTION

The Z380 CPU incorporates advanced architectural fea-
turesthat allow fastand efficientthroughput and increased
memory addressing capabilities while maintaining Z80®
CPU and Z180® MPU object-code compatibility. The Z380
CPU core provides a continuing growth path for present
Z80- or Z180%-based designs and offers the following key
features:

B Full Static CMOS Design with Low Power Standby
Mode Support

DC to 18 MHz Operating Frequency @ 5 Volts V
@ DC to 10 MHz Operating Frequency @ 33 Volts V.,

B Enhanced Instruction Set that Maintains Object-Code
Compatibility with Z80 and Z180 Microprocessors

B 16-Bit (64K) or 32-Bit (4G) Linear Address Space
B 16-Bit Internal Data Bus
@ Two Clock Cycle Instruction Execution (Minimum)

B Multiple On-Chip Register Files (Z380 MPU has Four
Banks)

BC/DE/HL/IX/IY Registers are Augmented by 16-Bit
Extended Registers (BCz/DEz/HLZz/IXz/IYz), PC/SP/I
Registers are Augmented by Extended Registers (PCz/
SPz/1z) for 32-Bit Addressing Capability.

B Newly Added IX' and Y’ Registers with Extended
Registers (IXz'/1YZ')

B Enhanced Interrupt Capabilities, Including 16-Bit
Vector

B Undefined Opcode Trap for Full Z380 CPU Instruction
Set

The Z380 CPU, an enhanced version of the Z80 CPU,
retains the Z80 CPU instruction set to maintain complete
binary-code compatiblity with presentZ80and Z180 codes.
The basic addressing modes of the Z80 microprocessor
have been augmented with Stack Pointer Relative loads
and stores, 16-bit and 24-bit Indexed offsets, and in-
creased Indirect register addressing flexibility, with all of
the addressing modes allowing access to the entire 32-bit
address space. Significant additions have been made to
the instruction setiincorporating16-bit arithmetic and logi-
cal operations, 16-bit I/O operations, multiply and divide,
acomplete setof register-to-register loads and exchanges,
plus 32-bit load and exchange, and 32-bit arithmetic
operation for address calculation.

The basic register file of the Z80 microprocessor is ex-
panded to include alternate register versions of the IX and
1Y registers. There are four sets of this basic Z80 micropro-
cessor register file present in the Z380 MPU, along with the
necessary resources to manage switching between the
different register sets. All of the register pairs and index
registers in the basic Z80 microprocessor register file are
expanded to 32 bits.

The Z380 CPU expands the basic 64 Kbyte Z80 and Z180
address space to a full 4 Gbyte (32-bit) address space.
This address space is linear and completely accessible to
the user program. The external /O address space is
similarly expanded to a full 4 Gbyte (32-bit) range, and 16-
bit 1/O, both simple and block move are included. A 256
byte-wide internal I/O space has been added. This space
will be used to access on-chip |/O resources on future
Superintegration implementation of this CPU core.

Figure 1-1 provides a detailed description of the basic
register architecture of the Z380 CPU with the size of the
register banks shown at four each, however, the Z380 CPU
architecture allows future expansion of up to 128 sets of
each.

1-1

N 2iLa5

2380™
USER'S MANUAL

1.2 CPU ARCHITECTURE

The Z380 CPU is a binary-compatible extension of the Z80
CPU and the Z180 CPU architecture. High throughput
rates are achieved by a high clock rate, high bus band-
width, and instruction fetch/execute overlap. Communi-
cating to the external world through an 8-bit or 16-bit data
bus, the 2380 CPU is a full 32-bit machine internally, with
a 32-bit ALU and 32-bit registers.

1.2.1 Modes of Operation

To maintain compatibility with the Z80/2180 CPU while
having the capability to manipulate 4 Gbytes of memory
address range, the Z380 CPU has two bits in the Select
Register (SR) to control the modes of operation. One bit
controls the address manipulation mode: Native mode or
Extended mode; and the other bit controls the data ma-
nipulation mode: Word mode or Long Word mode. In
result, the Z380 CPU has four modes of operation. On
reset, the Z380 CPU is in Native/Word mode, which is
compatible to the Z80/2180’s operation mode. For details
onthis subject, refer to Chapter 3, “Native/Extended Mode,
Word/Long Word Mode of Operation, and Decoder Direc-
tive Instructions.”

1.2.1.1 Native Mode and Extended Mode

The Z380 CPU can operate in either Native or Extended
mode, as controlled by a bit in the Select Register (SR). In
Native mode (the Reset configuration), all address ma-
nipulations are performed modulo 65536 (2'9). In this
mode, the Program Counter (PC) only increments across
16 bits, all address manipulation instructions (increment,
decrement, add, subtract, indexed, stackrelative, and PC
relative) only operate on 16 bits, and the Stack Pointer (SP)
only increments and decrements across 16 bits. The PC
high-order word is left at all zeros, as the high-order words
of the SP and the | register. Thus, Native mode is fully
compatible with the Z80 CPU’s 64 Kbyte address mode. It
is still possible to address memory outside of 64 Kbyte
address space for data storage and retrieval in Native
mode, however, since directaddresses, indirectaddresses,
and the high-order word of the SP, |, and the IX and IY
registers may be loaded with non-zero values. Executed
code and interrupt service routines must reside in the
lowest 64 Kbytes of the address space.

In Extended mode, however, all address manipulation
instructions operate on 32 bits, allowing access to the
entire 4 Gbyte address space of the Z380 CPU. In both
Native and Extended modes, the Z380 drives all 32 bits of
the address onto the external address bus; only the width
of the manipulated addresses distinguishes Native from
Extended mode. The Z380 CPU implements one instruc-
tion to allow switching from Native to Extended mode
(SETC XM); however, once in Extended mode, only Reset

will return the Z380 CPU to Native mode. This restriction
applies because of the possibility of “misplacing” interrupt
service routines or vector tables during the transition from
Extended mode back to Native mode.

1.2.1.2 Word or Long Word Mode
In addition to Native and Extended mode, which are

specific to memory space addressing, the Z380 CPU can f§§

operate in either Word or Long Word mode specific to data #
load and exchange operations. In Word mode (the Reset §
configuration), all word load and exchange operations
manipulate 16-bit quantities. For example, only the low-
order words of the source and destination are exchanged
in an exchange operation, with the high-order words
unaffected.

In the Long Word mode, all 32 bits of the source and
destination are exchanged. The Z380 CPU implements
two instructions plus decoder directives to allow switching
between Word and Long Word mode; SETC LW (Set
Control Long Word) and RESC LW (Reset Control Long
Word) perform a global switch, while DDIR W, DDIR LW
and their variants are decoder directives that select a
particular mode only for the instruction that they precede.

Note that all word data arithmetic (as opposed to address
manipulation arithmetic), rotate, shift, and logical opera-
tions are always in 16-bit quantities. They are not con-
trolled by either the Native/Extended or Word/Long Word
selections. The exceptions to the 16-bit quantities are, of
course, those multiply and divide operations with 32-bit
products or dividends.

All word Input/Output operations are performed on 16-bit
values, regardless of Word/Long Word operation.

1.2.2 Address Spaces

Addressing spaces in the Z380 CPU include the CPU
register, the CPU control register, the memory address,
on-chip I/O address, and the external |/O address. The
CPU register space is a superset of the Z80 CPU register
set, and consists of all of the registers in the CPU register
file. These CPU registers are used for data and address
manipulation, and are an extension of the Z80 CPU register
set, with four sets of this extended Z80 CPU register set
present in the Z380 CPU. Access to these registers is
specified in the instruction, with the active register set
selected by bits in the Select Register (SR) in the CPU
control register space.

1-3

N 205

Z380™
USER'S MANUAL

are handled by a newly added interrupt handing mode,
“Assigned Vectored Mode,” which is a fixed vectored
interrupt mode similar in interrupt handling to the Z180's
interrupts from on-chip peripherals. For handling interrupt
requests on the /INTO line, there are four modes available:

W 8080 compatible (Mode 0), in which the interrupting
device provides the first instruction of the interrupt
routine.

B Dedicated interrupts (Mode 1), in which the CPU
jumps to a dedicated address when an interrupt
occurs.

B Vectored interrupt mode (Mode 2), in which the
interrupting peripheral device provides a vector into a
table of jump address.

B Enhanced vectored interrupt mode (Mode 3), wherein
the CPU expects 16-bit vector, instead of 8-bit interrupt
vectors in Mode 2.

The first three modes are compatible with Z80 interrupt
modes; the fourth mode provides more flexibility.

Traps are synchronous events that trigger a special CPU
response when an undefined instruction is executed. It
can be used to increase system reliability, or used as a
“software trap instruction.”

Hardware resets occur when the /RESET line is activated
and override all other conditions. A /RESET causes certain
CPU control registers to be initialized.

For details on this subject, refer to Chapter 6, “Interrupts
and Traps.”

1.3 BENEFITS OF THE ARCHITECTURE

The Z380 CPU architecture provides several significant
benefits, includingincreased program throughput achieved
by higher bus bandwidth (16-bit wide bus), reduction to
two clocks/basic machine cycle (vs four clocks/cycle on
the Z80 CPU), prefetch cue, access to the larger linear
addressing space, enhanced instructions/new address-
ing mode, data/address manipulation in 16/32 bits, and
faster context switching by utilizing multiple register banks.

1.3.1 High Throughput

Very high throughput rates can be achieved with the 2380
CPU, due to the basic machine cycle's reduction to two
clocks/cycle from four clocks/cycle on the Z80 CPU, fine
tuned four staged pipeline with prefetch cue. This well
designed pipeline and prefetch cue are both totally trans-
parent to the user, thus maximizing the efficiency of the
pipeline all the time. The Z380 CPU implemented onto the
Z380MPU is configured with a 16-bit wide data bus, which
doubles the bus bandwidth. These architectural features
result in two clocks/instructions execution minimum, three
clocks/instruction on average. The high clock rates (up to
40 MHz) achievable with this processor. Make the overall
performance of the Z380 CPU more than ten times that of
the Z80.

1.3.2 Linear Memory Address Space

Z380 CPU architecture has 4 Gbytes of linear memory
address space. The Z80 CPU architecture allows 64
Kbytes of memory addressing space. This was more than
sufficient when the Z80 CPU was first developed. But as

the technology improved over time, applications started to
demand more complicated processing, multitasking, faster
processing, etc., with the high level language needed to
develop software. As a result, 64 Kbytes of memory ad-
dressing space is not enough for some Z80 CPU based
applications. In order to handle more than 64 Kbytes of
memory, the Z80 CPU requires aMemory Banking scheme,
or MMU (Memory Management Unit), like the Z180 MPU or
Z280 MPU. These provide the overhead to access more
than 64 Kbytes of memory.

The Z380 CPU architecture allows accesstoafull 4 Gbytes
(2%2) of memory addressing space as well as 4 Gbytes of
I/O addressing area, without using a Memory Banking
scheme, or MMU.

1.3.3. Enhanced Instruction Set with 16-Bit
and 32-Bit Manipulation Capability

The Z380 CPU instruction set is 100% upward compatible
to the Z80 CPU instruction set; that is all the Z80 instruc-
tions have been preserved at the binary level. New instruc-
tions added to the Z380 CPU include:

B Less restricted operand source/destination
combinations.

B More flexible register exchange instructions.

B Stack Pointer Relative addressing mode.

1-5

2L

Address Spaces E

N 2iL05

USER's MANUAL

CHAPTER 2
ADDRESS SPACES

2.1 INTRODUCTION

The Z380 CPU supports five address spaces correspond-
ing to the different types of locations that can be ad-
dressed and the method by which the logical addresses
are formed. These five address spaces are:

CPU Register Space. This consists of all the register
addresses in the CPU register file.

B CPU Control Register Space. This consists of the
Select Register (SR).

B Memory Address Space. This consists of the
addresses of all locations in the main memory.

@ External /O Address Space. This consists of all
external /O ports addresses through which peripheral
devices are accessed.

B On-Chip /O Address Space. This consists of all
internal I/O port addresses through which peripheral
devices are accessed. Also, this addressing space
contains registers to control the functionality of the
device, giving status information.

2.2 CPU REGISTER SPACE
The Z380 register file is illustrated in Figure 2-1. Note that

this figure shows the configuration of the register on the

Z380CPU, and the number of the register files may vary on
future Superintegration devices. The Z380 CPU contains
abundant register resources. At any given time, the pro-
gram has immediate access to both primary and alternate
registers in the selected register set. Changing register
sets is a simple matter of an LDCTL instruction to program
the Select Register (SR).

The CPU register file is divided into five groups of registers
(an apostrophe indicates a register in the auxiliary regis-
ters).

B Four sets of Flag and Accumulator registers (F, A, F',
A)

B Four sets of Primary and Working registers (B, C, D, E,
H L B,C,D,E,H,L)

® Four sets of Index registers (IX, IY, IX', 1Y)
B Stack Pointer (SP)

B Program Counter, Interrupt register, Refresh register
(PC, I, R)

Register addresses are either specified explicitly in the
instruction or are implied by the semantics of the instruc-
tion.

2-1

N 2iLaB

™

USER'S MANUAL

2.2.1 Primary and Working Registers

The working register set is divided into two register files:
the primary file and the alternate file (designated by prime
(). Each file contains an 8-bit accumulator (A), a Flag
register (F), and six 8-bit general-purpose registers (B, C,
D, E, H, and L) with their Extended registers. Only one file
can be active at any given time, although data in the
inactive file can still be accessed by using EX R, R’
instructions for the byte-wide registers, EXRR, RR' instruc-
tions for register pairs (either in 16-bit or 32-bit wide
depending on the LW status). Exchange instructions allow
the programmer to exchange the active file with the inac-
tive file. The EX AF, AF’, EXX, or EXALL instructions
changes the register files in use. Upon reset, the primary
register file in register set 0 is active. Changing register
sets is a simple matter of an LDCTL instruction to program
SR.

The accumulator is the destination register for 8-bit arith-
metic and logical operations. The six general-purpose
registers can be paired (BC, DE, and HL), and are ex-
tended to 32 bits by the extension to the register (with suffix
“z", BCz/DEz/HLz), to form three 32-bit general-purpose
registers. The HL register serves as the 16-bit or 32-bit
accumulator for word operations. Access to the Extended
portion of the registers is possible using the SWAP instruc-
tion or word Load instructions in Long Word operation
mode.

The Flag register contains eight status flags. Four can be
individually used for control of program branching, two are
used to support decimal arithmetic, and two are reserved.
These flags are set or reset by various CPU operations. For
details on Flag operations, refer to Section 5.2, “Flag
Register.”

2.2.2. Index Registers

The four index registers, IX, IX', IY, and IY’, are extended
to 32 bits by the extension to the register (with suffix “z";
IXz/IYz), to form 32-bit index registers. To access the
Extended portion of the registers use the SWAP instruction
or word Load instructions in Long Word operation mode.
These Index registers hold a 32-bit base address that is
used in the Index addressing mode.

Only one register of each can be active at any given time,
although data in the inactive file can still be accessed by
using EX X, IX' and EX1Y, 1Y’ (either in 16-bit or 32-bit wide
depending on the LW bit status). Index registers can also
function as general-purpose registers with the upper and
lower bytes of the lower 16 bits being accessed individu-
ally. These byte registers are called IXU, IXU’, IXL, and IXL'

for the IX and IX' registers, and IYU, IYU’, IYL, and IYL' for
the 1Y and IY’ registers.

Selection of primary or auxiliary Index registers can be
made by EXXX, EXXY, or EXALL instructions, or program-
ming of SR. Upon reset, the primary registers in register set
0is active. Changing register sets is a simple matter of an
LDCTL instruction to program SR.

2.2.3. Interrupt Register

The Interrupt register (1) is used in interrupt modes 2 and
3 for /INTO to generate a 32-bit indirect address to an _
interrupt service routine. The | register supplies the upper
24 or 16 bits of the indirect address and the interrupting

peripheral supplies the lower eight or 16 bits. In Assigned &4

Vectors mode for /INT3-/INT1, the upper 16 bits of the
vector are supplied by the | register; bits 15-9 are supplied
from the Assigned Vector Base register, and bits 8-0 are
the assigned vector unique to each of /INT3-/INT1.

2.2.4. Program Counter

The Program Counter (PC) is used to sequence through
instructions in the currently executing program and to
generate relative addresses. The PC contains the 32-bit
address of the current instruction being fetched from
memory. In Native mode, the PC is effectively only 16 bits
long, since the upper word [PC31-PC16] of the PC is
forcedto zero, and when carried from bit 15 to bit 16 (Lower
word [PC15-PC0] to Upper word [PC31-PC16]) are inhib-
ited in this mode. In Extended mode, the PC is allowed to
increment across all 32 bits.

2.2,5. R Register

The R register can be used as a general-purpose 8-bit
read/write register. The R register is not associated with
the refresh controller and its contents are changed only by
the user.

2.2.6. Stack Pointer

The Stack Pointer (SP) is used for saving information when
an interrupt or trap occurs and for supporting subroutine
calls and returns. Stack Pointer relative addressing allows
parameter passing using the SP. The SPis 16 bits wide, but
is extended by the SPz register to 32 bits wide.

2-3°

N 2iLa5

USER'S MANUAL

Bits within a byte:

716}15)14]|3)2)1]o0
16-bit word at address n:
Least Significant Byte Address n
Most Significant Byte Address n+1
32-bit word at address n:
D7-0 (Least Significant Byte) Address n
D15-8 Address n+1
D23-16 Address n+2
D31-24 (Most Significant Byte) Address n+3
Memory addresses:
Even address (A0=0) Odd address (A0=1)
Lleast ISigni;icantI Byte' Most ISignilficantI ByteI .
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 O

Figure 2-2. Bit/Byte Ordering Conventions

2-5

LS

2

|

- N
=Nt
.2
Q'S
ee
wa
E =

Do
=%]
(SR-]
w— &
e o
|
by =

e

=

N 2iL5

USER's MANUAL

CHAPTER 3

NATIVE EXTENDED MODE, WORD/LONG
WORD MODE OF OPERATIONS

AND DECODER DIRECTIONS

3.1 INTRODUCTION

The Z380™ CPU architecture allows access to 4 Gbytes
(2%) of memory addressing space, and 4G locations of
1/O. It offers 16/32-bit manipulation capability while main-
taining object-code compatibility with the Z80 CPU. In
order to implement these capabilities and new instruction
sets, it has two modes of operation for address manipula-
tion (Native or Extended mode), two modes of operation for
data manipulation (Word or Long Word mode), and a
special set of new Decoder Directives.

On Reset, the Z380 CPU defaults in Native mode and Word
mode. In this condition, it behaves exactly the same as the
Z80 CPU, even though it has access to the entire 4 Gbytes
of memory for data access and 4G locations of I/O space,

access to the newly added registers which includes Ex-
tended registers and register banks, and the capability of
executing all the Z380 instructions.

As described below, the Z380 CPU can be switched
between Word mode and Long Word mode during opera-
tion through the SETC LW and RESC LW instructions, or
Decoder Directives. The Native and Extended modes are
a key exception— it defaults up in Native mode, and can
be setto Extended mode by the instruction. Only Resetcan
return it to Native mode. Figure 3-1 illustrates the relation-
ship between these modes of operation.

2380
Native Extended
Word f
Long Word P ‘

780 Native Mode

Figure 3-1. Z380™ CPU Operation Modes

For the instructions which work with the DDIR instructions, refer to Appendix D and E.

3-1

N 2iLaB

USER'S MANUAL

The Z380 CPU implements one instruction to switch to
Extended mode from Native mode; SETC XM (set Ex-
tended mode) places the Z380 CPU in Extended mode.

Once in Extended mode, only Reset can return it to Native
mode. On Reset, the Z380 is in Native mode. Refer to
Sections 4 and 5 for more examples.

3.4 WORD AND LONG WORD MODE OF OPERATION
2.

The Z380 CPU can operate in either Word or Long Word
mode. In Word mode (the Reset configuration), all word
operations manipulate 16-bit quantities, and are compat-
ible with the Z80 CPU 16-bit operations. In the Long Word
mode, all word operations can manipulate 32-bit quanti-
ties. Note that the Native/Extended and Word/Long Word
selections are independent of one another, as Word/Long
Word pertains to data and operand address manipulation
only. The Z380 CPU implements two instructions and two
decoder directives to allow switching between these two
modes; SETC LW (Set Long Word) and RESC LW (Reset
Long Word) perform a global switch, while DDIR LW and
DDIR W are decoder directives that select a particular
mode only for the instruction that they precede.

Examples:

1. Effect of Word mode and Long Word mode
DDIRW
LD BC, (HL)

Loads BC15-BCO from the location (HL) and
(HL+1), and BCz (BC31-BC16) remains un-
changed.

DDIR LW
LD BC, (HL)

Loads BC31-BCOfromthe locations (HL) to (HL+3).

Immediate data load with DDIR instructions

DDIR IW,LW
LD HL,12345678H
Loads 12345678H into HL31-HLO.

DDIR IB,LW
LD HL,123456H

Loads 00123456H into HL31-HLO.
0OH is appended as the Most significant byte as
HL31-HL24.

DDIR LW
LD HL,1234H

Loads 00001234H into HL31-HLO.
0000H is appended as the HL31-HL16 portion.

N 2ILS

' et Ty P e RN
y e N . L : e
: N N B 3
N o (7 e
P o s —Y O]
P ey = [= e
e e et aed P
o L (-] s =3
O o - b sy L
; - . e e
o (11 P 7
- e L =3 o
e ’ Wi
= s <l .
s b oy d oy
. s i
= - = z
«©
L ; » :
o =
Ll
N s
5
N (L)

N 2iLaS

USER'S MANUAL

CHAPTER 4
ADDRESSING MODES AND DATA TYPES

4.1 INSTRUCTION

An instruction is a consecutive list of one or more bytes in
memory. Most instructions act upon some data; the term
operand refers to the data to be operated upon. For Z380™
CPU instructions, operands can reside in CPU registers,
memory locations, or I/O ports (internal or external). The
method used to designate the location of the operands for

an instruction are called addressing modes. The Z380
CPU supports seven addressing modes; Register, Imme-
diate, Indirect Register, Direct Address, Indexed, Program
Counter Relative Address, and Stack Pointer Relative. A
wide variety of data types can be accessed using these
addressing modes.

4.2 ADDRESSING MODE DESCRIPTIONS

The following pages contain descriptions of the address-
ing modes for the Z380 CPU. Each description explains
how the operand’s location is calculated, indicates which
address spaces can be accessed with that particular
addressing mode, and gives an example of an instruction
using thatmode, illustrating the assembly language format
for the addressing modes.

4.2.1 Register (R, RX)

When this addressing mode is used, the instruction pro-
cesses data taken from one of the 8-bit registers A, B, C,
D, E, H, L, IXU, IXL, IYU, IYL, one of the 16-bit registers BC,
DE, HL, IX, lY, SP, or one of the special byte registers | or
R.

Storing data in a register allows shorter instructions and
faster execution that occur with instructions that access
memory.

Instruction

OPERATION REGISTER - OPERAND

The operand value is the contents of the register.

The operand is always in the register address space. The
register length (byte or word) is specified by the instruction
opcode. In the case of Long Word register operation, it is
specified either through the SETC LW instruction or the
DDIR LW decoder directive.

Example of R mode:

1. Load register in Word mode.
DDIRW ;Nextinstruction in Word mode
LD BC,HL ;Load the contents of HL into BC

BCz BC HLz HL n
Before instruction
execution 1234 5678 9ABC DEFO
After instruction
execution 1234 DEFO 9ABC DEFO

2. Load register in Long Word mode.
DDIR LW ;Next instruction in Long Word mode
LD BC,HL ;Load the contents of HL into BC

BCz BC HLz HL
Before instruction
execution 1234 5678 9ABC DEFO
After instruction
execution 9ABC DEFO 9ABC DEFO
4.2.2 Inmediate (IM)

When the Immediate addressing mode is used, the data
processed is in the instruction.

The Immediate addressing mode is the only mode that
does not indicate a register or memory address as the
source operand.

N 2iLaB

2380™
USER'S MANUAL

4.2.4 Direct Address (DA)

When Direct Address mode is used, the data processed is
at the location whose memory or I/O port address is in the
instruction.

Depending on the instruction, the operand specified by
DA mode s either inthe I/O address space (1/O instruction)
or memory address space (all other instructions).

This mode is also used by Jump and Call instructions to
specify the address of the next instruction to be executed.

Instruction Memory or (The address serves as an immediate value that is loaded
OPERATION 1/O Port into the program counter.)
ADDRESS - OPERAND

The operand value is the contents of the location whose
address is in the instruction.

Also, DDIR Immediate Data Directives are used to expand
the direct address to 24 or 32 bits. Operand width is
affected by LW bit status for the load and exchange
instructions.

Example of DA mode:

1. Load BC register from memory location 00005E22H in Word mode

LD BC, (5E22H)

;Load BC with the data in address

;00005E22H
BC
Before instruction execution 1234
After instruction execution 0301
Memory location 00005E22 01
00005E23 03

2. Load BC register from memory location 12345E22H in Word mode

DDIR IW ;extend direct address by one word
LD BC, (12345E22H) ;Load BC with the data in address
;12345E22H
BC
Before instruction execution 1234
After instruction execution 0301
Memory location 12345E22 o1
12345E23 03

Load BC register from memory location 12345E22H in Long Word mode

DDIR IW,LW

;extend direct address by one word,

;and operation in Long Word

LD BC, (12345E22H) ;Load BC with the data in address

;12345E22H

BCz BC
Before instruction execution 1234 5678
After instruction execution 0705 0301
Memory location 12345E22 01

12345E23 03

12345E24 05

12345E25 07

RN 2iLaB Ustr's NAOAL
2. Load accumulator from location (IX-1) in Extended mode
SETC XM ;Set Extended mode
LD A, (IX-1) ;Load into the accumulator the
;contents of the memory location
;whose address is one less than
;the contents of IX
A Xz X
Before instruction execution 01 0001 0000
After instruction execution 23 0001 0000

Memory location

Address calculation: In Extended mode, OFFH encoding in
the instruction is sign extended to a 32-bit value before the
address calculation, but calculation is done in modulo 232
and takes into account the index register's extended
portion.

OOO0OFFFF 23

00010000
+ EEEFFFFE
OO00FFFF

4.2.6 Program Counter Relative Mode (RA)

The Program Counter Relative Addressing mode is used
by certain program control instructions to specify the
address of the nextinstruction to be executed (specifically,
the sum of the Program Counter value and the displace-
ment value is loaded into the Program Counter). Relative
addressing allows reference forward or backward fromthe
current Program Counter value; it is used for program
control instructions such as Jumps and Calls that access
constants in the memory.

As a displacement, an 8-bit, 16-bit, or 24-bit value can be
used. The address to be loaded into the Program Counter
is computed by adding the two's complement signed
displacement specified in the instruction to the current
Program Counter.

Also, in Native mode,

Instruction PC MEMORY
OPERATION ADDRESS —+ OPERAND
DISPLACEMENT -1

Example of RA mode:

1. Jump relative in Native mode, 8-bit displacement

JR $-2 ;Jumps to the location

;(Current PC value) - 2

Note that computation of the effective address is affected
by the mode of operation (Native or Extended). In Native
mode, address computation is done inmodulo 2'¢, and the
PC Extend (PC31-PC16) is forced to 0 and will not affect
this portion. In Extended mode, address computation is

. done is modulo 2%, and will affect the contents of PC

extend if there is a carry or borrow operation.

;'$’ represents for current PC value

;This instruction jumps to itself.

;since after the execution of this instruction,
;PC points to the next instruction.

N 2iLaB

USER'S MANUAL

4.2.7 Stack Pointer Relative Mode (SR)

For Stack Pointer Relative addressing mode, the data
processed is at the location whose address is the contents
of the Stack Pointer, offset by an 8-bit displacement in the
instruction.

The Stack Pointer Relative addressis computed by adding
the 8-bit two's complement signed displacement speci-
fied in the instruction to the contents of the SP, also
specified by the instruction. Stack Pointer Relative ad-
dressing mode is used to specify data items to be found in
the stack, such as parameters passed to procedures.

Offset portion can be expanded to 16 or 24 bits by using
DDIR immediate instructions (DDIR IB for a 16-bit offset,
DDIR IW for a 24-bit offset).

Instruction SP
OPERATION ADDRESS —
DISPLACEMENT —_—

Note that computation of the effective address is affected
by the operation mode (Native or Extended). In Native
mode, address computation is done in modulo 2'¢, mean-
ing computationis done in 16-bitand does not affectupper
half of the SP portion for calculation (wrap around within the
16-bit). In Extended mode, address computation is done
in modulo 2%,

Also, the size of the data transfer is affected by the LW
mode bit. In Word mode, transfer is done in 16 bits, and in
Long Word mode, transfer is done in 32 bits.

MEMORY
OPERAND

Example of SR mode:

1. Load HL from location (SP - 4) in Native mode, Word mode

LD HL, (SP-4) ;Load into the HL from the
;contents of the memory location
;whose address is four less than

;the contents of SP.

;Assume it is in Native/Word mode.

HLz HL SPz SP
Before instruction execution 1234 5678 OQ7FF 7F00
After instruction execution EFCD AB89 OQ7FF 7F00

Memory location

Address calculation: In Native mode, FCH (-4 in Decimal)
encoding in the instruction is sign extended to a 16-bit
value before the address calculation. Calculation is done
in modulo 2'® and does not take into account the Stack
Pointer’s extended portion.

07FF7EFC 89
07FF7EFD AB

7F00
+ EEEC
7EFC

N 205

USER'S MANUAL

4.3 DATA TYPES

The 2380 CPU can operate on bits, binary-coded decimal
(BCD) digits (four bits), bytes (eight bits), words (16 bits or
32 bits), byte strings, and word strings. Bits inregisters can
be set, cleared, and tested.

The basic data type is a byte, which is also the basic
accessible elementinthe register, memory, and I/O address
space. The 8-bit load, arithmetic, logical, shift, and rotate
instructions operate on bytes inregisters ormemory. Bytes
can be treated as logical, signed numeric, or unsigned
numeric value.

Words are operated on in a similar manner by the word
load, arithmetic, logical, and shift and rotate instructions.

Operation on 2-byte words is also supported. Sixteen-bit
load and arithmetic instructions operate on words in
registers or memory; words can be treated as signed or
unsigned numeric values. /O reads and writes can be
8-bit or 16-bit operations. Also, the Z380 CPU architecture
supports operation in Long Word mode to handle a 32-bit
address manipulation. For that purpose, 16-bit wide
registers originally on the Z80 have been expanded to 32
bits wide, along with the support of the arithmetic instruction
needed for a 32-bit address manipulation.

Bits are fully supported and addressed by number within
a byte (see Figure 2-2). Bits within byte registers or
memory locations can be tested, set, or cleared.

Operation on binary-coded decimal (BCD) digits are sup-
ported by Decimal Adjust Accumulator (DAA) and Rotate
Digit (RLD and RRD) instructions. BCD digits are stored in
byte registers ormemory locations, two per byte. The DAA
instruction is used after a binary addition or subtraction of
BCD numbers. Rotate Digit instructions are used to shift
BCD digit strings in memory.

Strings of up to 65536 (64K) bytes of Byte data or Word
data can be manipulated by the Z380 CPU's block move,
block search, and block 1/O instructions. The block move
instructions allow strings of bytes/words in memory to be
moved from one location to another. Block search instruc-
tions provide for scanning strings of bytes/words inmemory
to locate a particular value. Block /O instructions allow
strings of bytes or wordsto be transferred betweenmemory
and a peripheral device.

Arrays are supported by Indexed mode (with 8-bit, 16-bit,
or 24-bit displacement). Stackis supported by the Indexed
and the Stack Pointer Relative addressing modes, and by
special instructions such as Call, Return, Push, and Pop.

N 2L

4 .
H . i H .

. . . : ¢ ot

» N ‘ - A > i MEE S

. i A

. ’ : . H o
! . - oL e .

b . .- . A
. Y

- > “Hv s ~.IA N o ~W>‘
- 3

o~ R ‘ B 3
Ll s o0
S ey N . Y
.- c -~ A
- ™o 8 L
o . s T
e . . . et N
- N -~ tw Lt

e - % L » e
. L - .

N 2iL5

USER'Ss MANUAL

CHAPTER 5
INSTRUCTION SET

5.1 INTRODUCTION

The Z380™ CPU instruction set is a superset of the Z80 CPU
and the Z180 MPU; the Z380 CPU is opcode compatible
with the Z80 CPU/Z180 MPU. Thus, a Z80/Z180 program
can be executed on a Z380 CPU without modification. The
instruction set is divided into 12 groups by function:

B 8-Bit Load/Exchange Group

B 16/32-BitLoad, Exchange, SWAP and Push/Pop Group
B Block Transfers, and Search Group

B 8-Bit Arithmetic and Logic Operations

B 16/32-Bit Arithmetic Operations

B 8-Bit Bit Manipulation, Rotate and Shift Group

B 16-Bit Rotates and Shifts

B Program Control Group

m Input and Output Operations for External I/O Space
B Input and Output Operations for Internal 1/O Space
m CPU Control Group

W Decoder Directives

This chapter describes the instruction set of the Z380 CPU.
Flags and condition codes are discussed in relation to the
instruction set. Then, the interpretability of instructions and
trap are discussed. The last part of this chapter is a
detailed description of each instruction, listed in alphabeti-
cal order by mnemonic. This section is intended as a
reference for Z380 CPU programmers. The entry for each
instruction contains a complete description of the instruc-
tion, including addressing modes, assembly language
mnemonics, and instruction opcode formats.

5.2 PROCESSOR FLAGS

The Flag register contains six bits of status information that
are set or cleared by CPU operations (Figure 5-1). Four of
these bits are testable (C, P/V, Z, and S) for use with
conditional jump, call, or return instructions. Two flags are
not testable (H and N) and are used for binary-coded
decimal (BCD) arithmetic.

[slzfxu]xfefn]c]
7 6 5 4 3 2 1 0

Figure 5-1. Flag Register

The Flag register provides a link between sequentially
executed instructions, in that the result of executing one
instruction may alter the flags, and the resulting value of the
flags can be used to determine the operation of a subse-
quentinstruction. The program control instructions, whose
operation depends on the state of the flags, are the Jump,
Jump Relative, subroutine Call, Call Relative, and subrou-
tine Return instructions; these instructions are referred to
as conditional instructions.

. 2380
@ 205 USER'S MANUAL

5.2.7 Condition Codes Table 5-1 lists the condition code mnemonic, the flag
setting it represents, and the binary encoding for each

The Carry, Zero, Sign, and Parity/Overflow flags are used ~ condition code.

to control the operation of the conditional instructions. The

operation of these instructions is a function of the state of

one of the flags. Special mnemonics called condition

codes are used to specify the flag setting to be tested

during execution of a conditional instruction; the condition

codes are encoded into a 3-bit field in the instruction

opcode itself.

Table 5-1. Condition codes

Condition Codes for Jump, Call, and Return Instructions

Mnemonic Meaning Flag Setting Binary Code
NZ Not Zero* Z=0 000
z Zero* Z=1 001
NC No Carry* C=0 010
C Carry* C=1 011
NV No Overflow V=0 100
PO Parity Odd V=0 100
\ Overflow V=1 101
PE Parity Even V=1 101
NS No Sign S=0 110
P Plus S=0 110
S Sign S=1 111
M Minus S=1 11

*Abbreviated set

Condition Codes for Jump Relative and Call Relative Instructions

Mnemonic Meaning Flag Setting Binary Code
NZ Not Zero Z=0 100
Z Zero Z=1 101
NC No Carry C=0 110
C Carry C=1 111

5-3

AN 2iLaB

USER'S MANUAL

5.3.8. Long Word Mode (LW)

This bit controls the Long Word/Word mode selection for
the Z380 CPU. This bit is set by the SETC LW instruction
and cleared by the RESC LW instruction. When this bit is
set, the Z380 CPU is in Long Word mode; when this bit is
cleared the 2380 CPU is in Word mode. Reset clears this
bit. Note that individual Word load and exchange instruc-
tions may be executed in either Word or Long Word mode
using the DDIR W and DDIR LW decoder directives.

5.3.9. Interrupt Enable Flag (IEF)

This bit is the master Interrupt Enable for the Z380 CPU.
This bit is set by the El instruction and cleared by the DI
instruction, or on acknowledgment of an interrupt request.
When this bit is set, interrupts are enabled; when this bit is
cleared, interrupts are disabled. Reset clears this bit.

5.3.10. Interrupt Mode (IM)

This 2-bit field controls the interrupt mode for the /INTO
interrupt request. These bits are controlled by the IM
instructions (00 =M 0,01 =IM1,10=IM2, 11 = IM 3).
Reset clears both of these bits, selecting Interrupt Mode 0.

5.3.11. Lock (LCK)

This bit controls the Lock/Unlock status of the Z380 CPU.
This bit is set by the SETC LCK instruction and cleared by
the RESC LCK instruction. When this bit is set, no bus
requests will be accepted, providing exclusive access to
the bus by the Z380 CPU. When this bit is cleared, the Z380
CPU will grant bus requests in the normal fashion. Reset
clears this bit.

5.3.12. AF or AF’ Register Select (AF’)

This bit controls and reports whether AF or AF' is the
currently active pair of registers. AF is selected when this
bitis cleared, and AF'is selected when this bitis set. Reset
clears this bit, selecting AF.

5.4 INSTRUCTION EXECUTION AND EXCEPTIONS

Three types of exception conditions—interrupts, trap, and
Reset—can alter the normal flow of program execution.
Interrupts are asynchronous events generated by a device
external to the CPU; peripheral devices use interrupts to
request service from the CPU. Trap is a synchronous event
generated internally in the CPU by executing undefined
instructions. Resetis anasynchronous event generated by
outside circuits. It terminates all current activities and puts
the CPU into a known state. Interrupts and Traps are
discussed in detail in Chapter 6, and Reset is discussed in
detail in Chapter 7. This section examines the relationship
between instructions and the exception conditions.

5.4.1 Instruction Execution and Interrupts

When the CPU receives an interrupt request, and it is
enabled forinterrupts of that class, the interrupt is normally
processed at the end of the current instruction. However,
the block transfer and search instructions are designed to
be interruptible so as to minimize the length of time it takes
the CPU to respond to an interrupt. If an interrupt request
is received during a block move, block search, or block
I/O instruction, the instruction is suspended after the
currentiteration. The address of the instructionitself, rather
than the address of the following instruction, is saved on
the stack, so that the same instruction is executed again
when the interrupt handler executes an interrupt return

instruction. The contents of the repetition counter and the
registers that index into the block operands are such that,

after each iteration, when the instruction is reissued upon g
returning from an interrupt, the effect is the same as if the §
instruction were not interrupted. This assumes, of course, [§

that the interrupt handler preserves the registers.
5.4.2 Instruction Execution and Trap

The Z380 MPU generates a Trap when an undefined
opcodeis encountered. The action of the CPU inresponse
to Trap is to jump to address 00000000H with the status
bit(s) set. This response is similar to the Z180 MPU’s action
on execution of an undefined instruction. The Trap is
enabled immediately after reset, and it is not maskable.
This feature can be used to increase software reliability or
to implement “extended” instructions. An undefined op-
code can be fetched from the instruction stream, or it can
be returned as a vector in an interrupt acknowledge
transaction in Interrupt mode 0.

Since it jumps to address 00000000H, it is necessary to
have a Trap handling routine at the beginning of the
programif processing is to proceed. Otherwise, it behaves
justlike aresetforthe CPU. For adetailed description, refer
to Chapter 6.

N 2iLa5

Om

USER'S MANUAL

5.5.2 16-Bit and 32-Bit Load, Exchange,
SWAP, and PUSH/POP Group

This group of load, exchange, and PUSH/POP instructions
(Table 5-4) allows one or two words of data (two bytes
equal one word) to be transferred between registers and
memory.

The exchange instructions (Table 5-5) allow for switching
between the primary and alternate register files, exchang-
ing the contents of two register files, exchanging the
contents of an addressing register with the top word on the
stack. For possible combinations of the word exchange
instructions, refer to Table 5-5. The 16-bit and 32-bit loads
include transfer between registers and memory and imme-
diate loads of registers or memory. The Push and Pop
stack instructions are also included in this group. None of
these instructions affect the CPU flags, except for EX AF,
AF.

Table 5-6 has the supported source/destination combina-
tion for the 16-bit and 32-bit load instructions. The transfer
size, 16-bit or 32-bit, is determined by the status of LW bit
in SR, or by DDIR Decoder Directives.

PUSH/POP instructions are used to save/restore the con-
tents of a register onto the stack. It can be used to
exchange data between procedures, save the current
register file on context switching, or manipulate dataon the
stack, such as return addresses. Supported sources are
listed in Table 5-7.

Swap instructions allows swapping of the contents of the
Word wide register (BC, DE, HL, IX, or IY) with its Extended
portion. These instructions are useful to manipulate the
upper word of the register to be set in Word mode. For
example, when doing data accesses, other than
00000000H-0000FFFFH address range, use this instruc-
tion to set “data frame” addresses.

This group of instructions is affected by the status of the LW
bit in SR (Select Register), and Decoder Directives which
specifies the operation mode in Word or Long Word.

Table 5-4. 16-Bit and 32-Bit Load, Exchange, PUSH/POP Group Instructions

Instruction Name Format Note
Exchange Word/Long Word Registers EX dst,src See Table 5-5
Exchange Byte/Word Registers with Alternate Bank EXX
Exchange Register Pair with Alternate Bank EX RR,RR’ RR = AF, BC, DE, or HL
Exchange Index Register with Alternate Bank EXXX
EXXY
Exchange All Registers with Alternate Bank EXALL
Load Word/Long Word Registers LD dst,src See Table 5-6
LDW dst,src See Table 5-6
POP POP dst See Table 5-7
PUSH PUSH src "See Table 5-7
Swap Contents of D31-D16 and D15-D0 SWAP dst dst = BC, DE, HL, IX, or Y

Table 5-5. Supported Source and Destination
Combination for 16-Bit and 32-Bit
Exchange Instructions

Source
Destination BC DE HL IX Y
BC v v v v
DE N A
HL v «I
IX v
(SP) v v \I

Note: v are supported combinations. The exchange in-
structions which designate Y register as destination are
covered by the other combinations. These Exchange
Word instructions are affected by Long Word mode.

5-7

N 2iLa5

238
USER'S MANUAL

has to be an even number (DO = 0) in Word mode transfer,
and a multiple of four in Long Word mode (D1 and DO are
both 0). Also, in Word or Long Word Block transfer,
memory pointer values are recommended to be even
numbers so the number of the transactions will be mini-
mized.

Note that regardless of the Z380's operation mode, Native
or Extended, memory pointer increment/decrement will be
done in modulo 2%2. For example, if the operationis LDl and
HL31-HLO (HLz and HL) hold O000FFFF, after the opera-
tion the value in the HL31-HLO will be 0010000.

Table 5-8. Block Transfer and Search Group

Instruction Name Format
Compare and Decrement CPD
Compare, Decrement and Repeat CPDR
Compare and Increment CPI
Compare, Increment and Repeat CPIR
Load and Decrement LDD
Load , Decrement and Repeat LDDI
Load and Increment LDl
Load, Increment and Repeat LDIR
Load and Decrement in Word/Long Word LDDW

Load, Decrement and Repeat in Word/Long Word
LDDRW

Load and Increment in Word/Long Word LDIW

Load, Increment and Repeat in Word/Long Word
LDIRW

5.5.4 8-bit Arithmetic and Logical Group

This group of instructions (Table 5-9) perform 8-bit arith-
metic and logical operations. The Add, Add with Carry,
Subtract, Subtractwith Carry, AND, OR, Exclusive OR, and
Compare takes one input operand from the accumulator
and the other from a register, from immediate data in the
instruction itself, or from memory. For memory addressing
modes, follows are supported—Indirect Register, Indexed,
and Direct Address—except multiplies, which returns the
16-bit result to the same register by multiplying the upper
and lower bytes of one of the register pair (BC, DE, HL, or
SP).

The Increment and Decrement instructions operate on
data in a register or in memory; all memory addressing
modes are supported. These instructions operate only on
the accumulator—Decimal Adjust, Complement, and Ne-
gate. The final instruction in this group, Extend Sign, sets
the CPU flags according to the computed result.

The EXTS instruction extends the sign bit and leaves the
result in the HL register. If it is in Long Word mode, HLz
(HL31-HL16) portion is also affected.

The TST instruction is a nondestructive AND instruction. It
ANDs "A"register and source, and changes flags accord-
ing to the result of operation. Both source and destination
values will be preserved.

Table 5-9. Supported Source/Destination for 8-Bit Arithmetic and Logic Group

src/
Instruction Name Format dgst A B C D E H L IXHIXL IYH IYL n (HL) (IX+d) (IY+x)
Add With Carry (Byte) ADCAst st ¥ N N N A A AN A A AN NN)
Add (Byte) ADDAst st v N N A A A AN A AN NN)
AND AND[AIsie st v N N N A NN N A AN AN)
Compare (Byte) CPAlst st v v v v A A A A A A AN A A v
Complement Accumulator ~ CPL [A] dst
Decimal Adjust Accumulator DAA dst
Decrement (Byte) DEC dst S A N A N N N A v
Extend Sign (Byte) EXTS [A] dst
Increment (Byte) INC dst gt v AN A AN AN A A AN AN AN R
Multiply (Byte) MLT src Note 1
Negate Accumulator NEG [A] dst
OR ORIt st v v v N v A AN AN AN A wl
Subtractwith Carry (Byte) SBCAsc st N v v v N A A A N A A A A A N
Subtract (Byte) SBMAIle st v N v A NN AN A NN AN A xl
Nondestructive Test TST dst sc NN NN A NN LY
Exclusive OR XOR[Alst st N v v A N N AN A A A A A AN y

Note 1: dst = BC, DE, HL, or SP.

5-9

AN 2iLa5

2380™
USER'S MANUAL

5.5.6 8-Bit Manipulation, Rotate and Shift
Group

Instructions in this group (Table 5-11) test, set, and reset
bits within bytes, and rotate and shift byte data one bit
position. Bits to be manipulated are specified by a field
within the instruction. Rotate can optionally concatenate
the Carry flag to the byte to be manipulated. Both left and
right shifting is supported. Right shifts can either shift 0into
bit 7 (logical shifts), or can replicate the sign in bits 6 and
7 (arithmetic shifts). All these instructions, Set Bit and
Reset Bit, set the CPU flags according to the calculated
result; the operand can be a register or amemory location

specified by the Indirect Register or Indexed addressing
mode.

The RLD and RRD instructions are provided for manipulat-
ing strings of BCD digits; these rotate 4-bit quantities in
memory specified by the Indirect Register. The low-order
four bits of the accumulator are used as a link between
rotation of successive bytes.

Table 5-11. Bit Set/Reset/Test, Rotate and Shift Group

Instruction Name Format A B C D E H L (HL) (IX+d) (IY+d)
Bit Test BIT dst) NN NN YA < xl
Reset Bit RESdst v NN NN A))
Rotate Left RL dst \l S N Y v wl
Rotate Left Accumulator RLA v

Rotate Left Circular RLCdst NN AN N AN A v v
Rotate Left Circular (Accumulator) RLCA \

Rotate Left Digit RLD v

Rotate Right RR dst \l A R\ J
Rotate Right Accumulator RRA v

Rotate Right Circular RRCdst S A e e A v N
Rotate Right Circular (Accumulator) RRCA v

Rotate Right Digit RRD vy

Set Bit SETdst NN NN AN N «l
Shift Left Arithmetic SLAdst S A A «l «I
Shift Right Arithmetic SRAdst NN N NN NN v v
Shift Right Logical SRL R VoA A AN N A \/ «l

5.5.7 16-Bit Manipulation, Rotate and Shift
Group

Instructions in this group (Table 5-12) rotate and shift word
data one bit position. Rotate can optionally concatenate
the Carry flag to the word to be manipulated. Both left and
right shifting is supported. Right shifts can either shift O into

bit 15 (logical shifts), or canreplicate the sign in bits 14 and
15 (arithmetic shifts). The operand can be aregister pair or
memory location specified by the Indirect Register or
Indexed addressing mode, as shown below.

Table 5-12. 16-Bit Rotate and Shift Group.

Destination
Instruction Name Format BC DE HL IX 1Y (HL) (HL) (IX+d) (IY+d)
Rotate Left Word RLW dst v v NN N N N N N
Rotate Left Circular Word RLCW dst \I) NN N AN N N
Rotate Right Word RRW dst v v NN d N N}] \
Rotate Right Circular Word ~ RRCW dst v) v NN N Y v V
Shift Left Arithmetic Word SLAW dst «I v NN A N N N N
Shift Right Arithmetic Word ~ SRAW dist Vo4 YA v v
Shift Right Logical Word SRLW 7 v NGy N N N N N

N 2iLas

USER'S MANUAL

5.5.9 External Input/Output Instruction
Group

This group of instructions (Table 5-14) are used for trans-
ferring a byte, a word, or string of bytes or words between
peripheral devices and the CPU registers or memory. Byte
I/O port addresses transfer bytes on D7-D0 only. These 8-
bit peripherals in a 16-bit data bus environment must be
connected to data line D7-DO0. In an 8-bit data bus environ-
ment, word /O instructions to external I/O peripherals
should not be used; however, on-chip peripherals which is
external to the CPU core and assigned as word I/O device
can still be accessed by word 1/O instructions.

The instructions for transferring a single byte (IN, OUT) can
transfer data between any 8-bit CPU register or memory
address specified in the instruction and the peripheral port
specified by the contents of the C register. The IN instruc-
tion sets the CPU flags according to the input data;
however, special instructions restricted to using the CPU
accumulator and Direct Address mode and do not affect
the CPU flags. Another variant tests an input port specified
by the contents of the C register and sets the CPU flags
without modifying CPU registers or memory.

Theinstructions for transferring a single word (INW, OUTW)
can transfer data between the register pair and the periph-
eral port specified by the contents of the C register. For
Word 1/0, the contents of B, D, or H appear on D7-D0 and

the contents of C, E, or L appear D15-D7. These instruc-
tions do not affect the CPU flags.

Also, there are I/O instructions available which allow to
specify 16-bit absolute 1/0 address (with DDIR decoder
directives, a 24-bit or 32-bit address is specified) is avail-
able. These instructions do not affect the CPU flags.

The remaining instructions in this group form a powerful
and complete complement of instructions for transferring
blocks of data between 1/O ports and memory. The opera-
tion of these instructions is very similar to that of the block
move instructions described earlier, with the exception
that one operand is always an I/O port whose address
remains unchanged while the address of the other oper-
and (amemory location) isincremented or decremented.In
Word mode of transfer, the counter (i.e., BC register) holds
the number of transfers, rather than number of bytes to
transfer in memory-to-memory word block transfer. Both
byte and word forms of these instructions are available.
The automatically repeating forms of these instructions are
interruptible, like memory-to-memory transfer.

The I/O addresses output on the address bus is de-
pendant on the 1/O instruction, as listed in Table 2-1.

N 2iLar5

™

USER'S MANUAL

5.5.10 Internal I/O Instruction Group

This group (Table 5-15) of instructions is used to access
on-chip 1/0 addressing space on the Z380 CPU. This
group consists of instructions for transferring a byte from/
to Internal I/O locations and the CPU registers or memory,
or a blocks of bytes from the memory to the same size of
Internal 1/O locations for initialization purposes. These
instructions are originally assigned as newly added /O
instructions on the Z180 MPU to access Page 0 /O
addressing space. There is 256 Internal I/O locations, and
all of them are byte-wide. When one of these /O instruc-
tions is executed, the Z380 MPU outputs the register
address being accessed in a pseudo transaction of two
BUSCLK durations cycle, with the address signals A31-A8
at0. Inthe pseudo transactions, all bus control signals are
at their inactive state.

The instructions for transferring a single byte (INO, OUTO)
can transfer data between any 8-bit CPU register and the
Internal 1/0 address specified in the instruction. The INO
instruction sets the CPU flags according to the input data;
however, special instructions which do not have a destina-

tion in the instruction with Direct Address (INO (n)), do not
affect the CPU register, but alters flags accordingly. An-
other variant, the TSTIO instruction, does a logical AND to
the instruction operand with the internal I/O location speci-
fied by the C register and changes the CPU flags without
modifying CPU registers or memory.

The remaining instructions in this group form a powerful
and complete complement of instructions for transferring
blocks of data from memory to Internal I/O locations. The
operation of these instructions is very similar to that of the
block move instructions described earlier, with the excep-
tion that one operand is always an Internal 1/O location
whose address also increments or decrements by one
automatically, Also, the address of the other operand (a
memory location) is incremented or decremented. Since
Internal 1/0O space is byte-wide, only byte forms of these
instructions are available. Automatically repeating forms
of these instructions are interruptible, like memory-to-
memory transfer.

Table 5-15. Internal I/O Instruction Group

Instruction Name Format

Input from Internal 1/O Location INO dst,(n) dst=A,B,C,D,E,Hor L
Input from Internal I/O Location(Nondestructive) INO (n)

Test 1/O TSTIOn

Output to Internal I/O Location OUTO (n),src src=A,B,C,D,E,HorL
Output to Internal I/O and Decrement OTDM

Output to Internal I/O and Increment OTIM

Output to Internal /O, Decrement and Repeat OTDMR

Output to Internal I/O, Increment and Repeat OTIMR

Currently, the Z380 CPU core has the following registers as a part of the CPU core:

Register Name

Internal I/O address

Interrupt Enable Register 16H
Assigned Vector Base Register 17H
Trap Register 18H

Chip Version ID Register OFFH

Chip Version ID register returns one byte data, which
indicates the version of the CPU, or the specific implemen-
tation of the Z380 CPU based Superintegration device.
Currently, the value 00H is assigned to the Z380 MPU, and
other values are reserved.

For the other three registers, refer to Chapter 6, “Interrupt
and Trap.”

Also, the Z380 MPU has registers to control chip selects,
refresh, waits, and 1/O clock divide to Internal I/O address
0O0H to 10H. For these register, refer to Z380 MPU Product
specification.

5-156

N 2iLaB

238
USER'S MANUAL

5.5.12 Decoder Directives

The Decoder Directives (Table 5-17) are a special instruc-
tions to expand the Z80 instruction set to handle the Z380's
4 Gbytes of linear memory addressing space. For details
on this instruction, refer to Chapter 3.

Table 5-17. Decoder Directive Instructions

DDIRW Word Mode

DDIR IBW Immediate Byte, Word Mode

DDIR IW,W Immediate Word, Word Mode
DDIR 1B Immediate Byte

DDIR LW Long Word Mode

DDIR IB,LW Immediate Byte, Long Word Mode
DDIR IW,LW Immediate Word, Long Word Mode
DDIR IW Immediate Word

5.6 NOTATION AND BINARY ENCODING

The rest of this chapter consists of a detailed description
of the Z380 CPU instructions, arranged in alphabetical
order by mnemonic. This section describes the notational
conventions used in the instruction descriptions and the
binary encoding for register fields within the instruction’s
operation codes (opcodes).

The description of each instruction begins on a new page.
The instruction mnemonic and name are printed in bold
letters atthe top of each page to enable the reader to easily
locate a desired description. The assembly language
syntax is then given in a single generic form that covers all
the variants of the instruction, along with a list of applicable
addressing modes. This is followed by a description of the
operation performed by the instruction in “pseudo Pascal”
fashion, a detailed description, a listing of all the flags that
are affected by the instruction, and illustrations of the
opcodes for all variants of the instruction.

Symbols. The following symbols are used to describe the
instruction set.

n An 8-bit constant

nn A 16-bit constant

d An 8-bit offset. (two's complement)

src Source of the instruction

dst Destination of the instruction

SR Select Register

R Any register. In Word operation, any register pair.
Any 8-bit register (A, B, C, D, E, H, or L) for Byte
operation.

IR Indirect register

RX Indexed register (IX or IY) in Word operation, IXH,
IXL, IYH, or IYL for Byte operation.

SP Current Stack Pointer

(C) 1/0 Port pointed by C register

cc Condition Code
[1 Optional field
() Indirect Address Pointer or Direct Address

Assignment of a value is indicated by the symbol "«". For

example,
dst « dst + src

indicates that the source data is added to the destination
data and the result is stored in the destination location.

The symbol “<" indicates that the source and destination
is swapping. For example,

dst < src

indicates that the source data is swapped with the data in
the destination; after the operation, data at “src” is in the
“dst” location, and data in “dst “ is in the “src” location.

The notation “dst (b)” is used to refer to bit “b” of a given
location, “dst(m-n)” is used to refer to bit location m to n of
the destination. For example,

HL(7) specifies bit 7 of the destination.

and

HL(23-16) specifies bit location 23 to 16 of the HL
register.

Flags. The Fregister contains the following flags followed
by symbols.

S Sign Flag

Z Zero Flag

H Half Carry Flag

PN Parity/Overflow Flag
N Add/Subtract Flag
C Carry Flag

5-17

™

. 230
@ 2".@3 USER'S MANUAL

Table 5-18. Execution Time

Operation Byte Word Word Long Long Long Long Long
Sequence B Y B/B WWw W/B/B B/W/B B/BW B/B/BB
Memory Read 3-4 3-4 5-6 5-6 7-8 7-8 7-8 9-10
Memory Write 0-1 0-1 2-3 2-3 4-5 4-5 4-5 6-7
Internal 1/0 Read 3-4 N/A N/A N/A N/A N/A N/A N/A
Internal 1/0O Write 0-1 N/A N/A N/A N/A N/A N/A N/A
1X External /O Read 4-5 4-5 N/A N/A N/A N/A N/A N/A
1X External |/O Write 1-2 1-2 N/A N/A N/A N/A N/A N/A
2X External 1/O Read 9-11 9-11 N/A N/A N/A N/A N/A N/A
2X External /O Write 1-3 1-3 N/A N/A N/A N/A N/A N/A
4X External 1/0 Read 17-21 17-21 N/A N/A N/A N/A N/A N/A
4X External /0O Write 1-5 1-5 N/A N/A N/A N/A N/A N/A
6X External I/0 Read 25-31 25-31 N/A N/A N/A N/A N/A N/A
6X External 1/O Write 1-7 1-7 N/A N/A N/A N/A N/A N/A
8X External I/0 Read 33-41 33-41 N/A N/A N/A N/A N/A N/A
8X External 1/0 Write 1-9 1-9 N/A N/A N/A N/A N/A N/A

Note: Units are in Clocks. “N/A" is not applicable for that particular transaction.

™

. 2380
@ ZILGE USER'S MANUAL

ADC
ADD WITH CARRY (WORD)

ADC HL,src dst = HL
src = BC, DE, HL, SP

Operation: HL(15-0) « HL(15-0) + src(15-0) + C

The source operand together with the Carry flag is added to the HL register and the sum is
stored in the HL register. The contents of the source are unaffected. Two's complement
addition is performed.

Flags: Set if the result is negative; cleared otherwise

Set if the result is zero; cleared otherwise

Set if there is a carry from bit 11 of the result; cleared otherwise)

Set if arithmetic overflow occurs, that s, if both operands are of the same sign and the

result is of the opposite sign; cleared otherwise

Cleared

Set if there is a carry from the most significant bit of the result; cleared otherwise

Addressing Execute
Mode Syntax Instruction Format Time Note
R: ADCHLR 11101101 01rr1010 2

Field Encodings: rr: 00 for BC, 01 for DE, 10 for HL, 11 for SP

5-21

. 2380™
@ 2iLdls USER'S MANUAL
ADD
ADD (BYTE)
ADD A,src src =R, RX, IM, IR, X
Operation: A « As+src
The source operand is added to the accumulator and the sum is stored in the accumulator.
The contents of the source are unaffected. Two’s complement addition is performed.
Flags: S: Setif the result is negative; cleared otherwise
Z: Setif the result is zero; cleared otherwise
H: Setif there is a carry from bit 3 of the result; cleared otherwise
V: Setif arithmetic overflow occurs, that s, if both operands are of the same sign and the
result is of the opposite sign; cleared otherwise
N: Cleared
C: Setif there is a carry from the most significant bit of the result; cleared otherwise
Addressing Execute
Mode Syntax Instruction Format Time Note
R: ADD AR 10000-r- 2
RX: ADD A,RX 11y11101 1000010w 2
IM: ADD A,n 11000110 ——n— 2
IR: ADD A,(HL) 10000110 2+r1
X: ADD A,(XY+d) 11y11101 10000110 ——d— 4+r |

Field Encodings: r: per convention

y: Ofor X, 1 for IY
w: O for high byte, 1 for low byte

5-23

" z
N 2iLa5 USER's MANUAL
ADD
ADD TO STACK POINTER (WORD)
ADD SP,srcsrc = IM
Operation: if (XM) then begin
SP(31-0) « SP(31-0) + src(31-0)
end
else begin
SP(15-0) « SP(15-0) + src(15-0)
end
The source operand is added to the SP register and the sum is stored in the SP register. This
has the effect of allocating or allocating space on the stack. Two's complement addition is
performed.
Flags: S: Unaffected
Z: Unaffected
H: Set if there is a carry from bit 11 of the result; cleared otherwise
V: Unaffected
N: Cleared
C: Setif there is a carry from the most significant bit of the result; cleared otherwise
Addressing Execute
Mode Syntax Instruction Format Time Note
IM: ADD SP,nn 11101101 10000010 -n(low)- -n(high) 2 I, X

5-25

™

" 2380
N 2iLas USER'S MANUAL

AND
AND (BYTE)

AND [AJsrc src =R, RX, IM, IR, X
Operation: A « AANDsrc

Alogical AND operationis performed between the corresponding bits of the source operand
and the accumulator and the result is stored in the accumulator. A 1 is stored wherever the
corresponding bits in the two operands are both 1s; otherwise a 0 is stored. The contents
of the source are unaffected.

Flags: S: Setif the most significant bit of the result is set; cleared otherwise
Z: Setif all bits of the result are zero; cleared otherwise
H: Set
P: Setif the parity is even; cleared otherwise
N: Cleared
C: Cleared
Addressing Execute
Mode Syntax Instruction Format Time Note
R: AND [A,]R 10100-r- 2
RX: AND [A,]IRX 11y11101 1010010w 2
IM: AND [A,In 11100110 —n— 2
IR: AND [A,]J(HL) 10100110 2+r1
X: AND [A,](XY+d) 11y11101 10100110——d— 441

Field Encodings: r: per convention
y: Ofor X, 1forlY
w: O for high byte, 1 for low byte

5-27

. 238
@ Z'Lm USER'S MANUAL

BIT
BIT TEST

BIT b,dst dst=R, IR, X
Operation: Z <« NOT dst(b)

The specified bit b within the destination operand is tested, and the Zero flag is set to 1 if
the specified bit is 0, otherwise the Zero flag is cleared to 0. The contents of the destination
are unaffected. The bit to be tested is specified by a 3-bit field in the instruction; this field
contains the binary encoding for the bit number to be tested. The bit number b must be
between O and 7.

Flags: S: Unaffected

Z: Setif the specified bit is zero; cleared otherwise

H: Set

V: Unaffected

N: Cleared

C: Unaffected
Addressing Execute
Mode Syntax Instruction Format Time Note
R: BIT b,R 11001011 O1bbb-r- 2
IR: BIT b,(HL) 11001011 01bbb110 2+r1
X: BIT b,(XY+d) 11y11101 11001011 ——d— 01bbb110 4+r |

Field Encodings: r: per convention
y: OforIX, 1forlY

5-29

™

. Z380
@ 2iLa5 USER'S MANUAL

CALL
CALL
CALL [cc,]dst dst = DA
Operation: if (cc is TRUE) then begin
if (XM) then begin
SP « SP-4
(SP) « PC(7-0)
(SP+1) « PC(15-8)
(SP+2) «— PC(23-16)
(SP+3) « PC(31-24)
PC(31-0) « dst(31-0)
else begin
SP « SP-2
(SP) « PC(7-0)
(SP+1) « PC(15-8)
PC(15-0) « dst(15-0)
end
end

A conditional Call transfers program control to the destination address if the setting of a
selected flag satisfies the condition code “cc” specified in the instruction; an Unconditional
Call always transfers control to the destination address. The current contents of the Program
Counter (PC) are pushed onto the top of the stack; the PC value used is the address of the
first instruction byte following the Call instruction. The destination address is then loaded
into the PC and points to the first instruction of the called procedure. At the end of a
procedure a Return instruction (RET) can be used to return to the original program.

Each of the Zero, Carry, Sign, and Overflow Flags can be individually tested and a call
performed conditionally on the setting of the flag.

The operand is not enclosed in parentheses with the CALL instruction.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected
Addressing Execute
Mode Syntax Instruction Format Time Note
DA: CALL CC,addr 11-cc100 -a(low)- -a(high) note I, X
CALL addr 11001101 -a(low)- -a(high) 44w I, X

Field Encodings: cc: 000 for NZ, 001 for Z, 010 for NC, 011 for C,
100 for PO or NV, 101 for PE or V, 110 for P or NS, 111 for M or S

Note: 2 if CC is false, 4+w if CC is true

5-31

USER'S MANUAL
CCF
COMPLEMENT CARRY FLAG
CCF
Operation: C « NOTC
The Carry flag is inverted.
Flags: S: Unaffected
- Z: Unaffected
H: The previous state of the Carry flag
V: Unaffected
N: Cleared
C: Setif the Carry flag was clear before the operation; cleared otherwise
Addressing Execute
Mode Syntax Instruction Format Time Note
CCF 00111111 2

5-33

] z
N 2ILaB USER'S MANUAL

cPw
COMPARE (WORD)
CPW [HL,]src src =R, RX, IM, X
Operation: HL(15-0) — src(15-0)
The source operand is compared with the HL register and the flags are set accordingly. The
contents of the HL register and the source are unaffected. Two's complement subtraction
is performed.
Flags: S: Setif the result is negative; cleared otherwise
Z: Setif the result is zero; cleared otherwise
H: Setif there is a borrow from bit 12 of the result; cleared otherwise
V: Setif arithmetic overflow occurs, that is, if the operands are of different signs and the
result is of the same sign as the source; cleared otherwise
N: Set
C: Setif there is a borrow from the most significant bit of the result; cleared otherwise
Addressing Execute
Mode Syntax Instruction Format Time Note
R: CPW [HL,IR 11101101 10111 1rr 2
RX: CPW [HL,]RX 11y11101 10111111 2
IM: CPW [HL,]nn 11101101 10111110 -n(low)- n(high)- 2
X: CPW [HL,](XY+d) 11y11101 11111110 —d— 4+r
Field Encodings: r: 00 for BC, 01 for DE, 11 for HL

y: O for IX, 1 for IY

5-35

om

@ 2iLdis USER'S MANUAL
CPDR
COMPARE, DECREMENT AND REPEAT (BYTE)
CPDR
Operation: Repeat until (BC=0 OR match) begin
A - (HL)
if (XM) then begin
HL(31-0) — HL(31-0) - 1
end
else begin
HL(15-0) «— HL(15-0) - 1
end
BC(15-0) « BC(15-0) - 1
end
This instruction is used for searching strings of byte data. The bytes of data starting at the
location addressed by the HL register are compared with the contents of the accumulator
until either an exact match is found or the string length is exhausted becuase the BC register
has decremented to zero. The Sign and Zero flags are set to reflect the result of the
comparison. The contents of the accumulator and the memory bytes are unaffected. Two’s
complement subtraction is performed.
After each comparison, the HL register is decremented by one, thus moving the pointer to
the previous element in the string.
The BCregister, used as a counter, is then decremented by one. If the result of decrementing
the BC register is not zero and no match has been found, the process is repeated. If the
contents of the BC register are zero at the start of this instruction, a string length of 65,536
is indicated.
This instruction can be interrupted after each execution of the basic operation. The PC value
atthe start of this instruction is pushed onto the stack so that the instruction can be resumed.
Flags: S: Set if the last result is negative; cleared otherwise
Z: Set if the last result is zero, indicating a match; cleared otherwise
H: Setif there is a borrow from bit 4 of the last result; cleared otherwise
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Set
C: Unaffected
Addressing Execute
Mode Syntax Instruction Format Time Note
CPDR 11101101 10111001 (3+r)n X

5-37

™

USER'S MANUAL

Operation:

Flags:

Addressing
Mode

CPIR

COMPARE, INCREMENT AND REPEAT (BYTE)

CPIR
Repeat until (BC=0 OR match) begin
A - (HL)
if (XM) then begin
HL(31-0) « HL(31-0) + 1
end
else begin
HL(15-0) « HL(15-0) + 1
end
BC(15-0) «— BC(15-0) - 1
end

This instruction is used for searching strings of byte data. The bytes of data starting at the
location addressed by the HL register are compared with the contents of the accumulator
until either an exact match is found or the string length is exhausted becuase the BC register
has decremented to zero. The Sign and Zero flags are set to reflect the result of the
comparison. The contents of the accumulator and the memaory bytes are unaffected.
Two's complement subtraction is performed.

After each comparison, the HL register is incremented by one, thus moving the pointer to
the next element in the string. The BC register, used as a counter, is then decremented by
one. If the result of decrementing the BC register is not zero and no match has been found,
the process is repeated. If the contents of the BC register are zero at the start of this
instruction, a string length of 65,536 is indicated.

This instruction can be interrupted after each execution of the basic operation. The PC value
atthe start of this instruction is pushed onto the stack so that the instruction can be resumed.

S: Setif the last result is negative; cleared otherwise
Z: Setif the last result is zero, indicating a match; cleared otherwise
H: Setif there is a borrow from bit 4 of the last result; cleared otherwise
V: Setif the result of decrementing BC is not equal to zero; cleared otherwise
N: Set
C: Unaffected
Execute
Syntax Instruction Format Time Note
CPIR 11101101 10110001 (3+r)n X

5-39

USER'S MANUAL

Operation:

Flags:

Addressing
Mode

CPLW
COMPLEMENT HL REGISTER (WORD)

CPLW [HL]
HL(15-0) « NOT HL(15-0)

The contents of the HL register are complemented (ones complement); all 1s are changed
to 0 and vice-versa.

S: Unaffected
Z: Unaffected
H: Set
V: Unaffected
N: Set
C: Unaffected
Execute
Syntax Instruction Format Time Note
CPLW [HL] 11011101 00101111 2

5-41

. 2380
nN2)Las USER'S MANUAL

DDIR
DECODER DIRECTIVE

DDIR mode mode = W or LW, IB or IW
Operation: None, decoder directive only
This is not an instruction, but rather a directive to the instruction decoder.

The instruction decoder may be directed to fetch an additional byte or word of immediate
data or address with the instruction, as well as tagging the instruction for execution in either
Word or Long Word mode. All eight combinations of the two options are supported, as shown
in the encoding below. Instructions which do not support decoder directives are assembled
by the instruction decoder as if the decoder directive were not present.

The IB decoder directive causes the decoder to fetch an additional byte immediately after
the existing immediate data or direct address, and in front of any trailing opcode bytes (with
instructions starting with DD-CB or FD-CB, for example).

Likewise, the IW decoder directive causes the decoder to fetch an additional word
immediately after the existing immediate data or direct address, and in front of any trailing
opcode bytes.

Byte ordering within the instruction follows the usual convention; least significant byte first,
followed by more significant bytes. More-significantimmediate data or direct address bytes
not specified in the instruction are taken as all zeros by the processor.

The W decoder directive causes the instruction decoder to tag the instruction for execution
in Word mode. This is useful while the Long Word (LW) bit in the Select Register (SR) is set,
but 16-bit data manipulation is required for this instruction.

The LW decoder directive causes the instruction decoder to tag the instruction for execution
in Long Word mode. This is useful while the LW bit in the SR is cleared, but 32-bit data
manipulation is required for this instruction.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected
Addressing Execute
Mode Syntax Instruction Format Time Note
DDIR mode 11w11101 110000im 0
Field Encodings: wim: 000 W Word mode
001 IBW Immediate byte, Word mode
010 IW,wW Immediate word, Word mode
011 IB Immediate byte
100 LW Long Word mode

101 IB,LW Immediate byte, Long Word mode
110 IW,LW Immediate word, Long Word mode
111 W Immediate word

5-43

™

@ 2ilanL USER'S MANUAL
DEC[W]
DECREMENT (WORD)
DEC[W] dstdst = R, RX
Operation: if (XM) then begin
dst(31-0) « dst(31-0) - 1
end
else begin
dst(15-0) « dst(15-0) - 1
end
The destination operand is decremented by one and the result is stored in the destination.
Two's complement subtraction is performed. Note that the length of the operand is
\ controlled by the Extended/Native mode selection, which is consistent with the manipulation
of an address by the instruction.
Flags: S: Unaffected
Z: Unaffected
| H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected
Addressing Execute
Mode Syntax Instruction Format Time Note
R: DEC[W] R 00rr1011 2 X
RX: DEC[W] RX 11y11101 00101011 2 X

Field Encodings: rr: 00 for BC, 01 for DE, 10 for HL, 11 for SP

y: OforIX, 1 for IY

5-45

™

. 238
@ 2iLaB USER'S MANUAL
DIVUW
DIVIDE UNSIGNED (WORD)
DIVUW [HL,]src src =R, RX, IM, X
Operation: HL(15-0) « HL/src
HL(31-16) « remainder
The contents of the the HL register (dividend) are divided by the source operand (divisor)
and the quotient is stored in the lower word of the HL register; the remainder is stored in the
upper word of the HL register. The contents of the source are unaffected. Both operands are
treated as unsigned, binary integers. There are three possible outcomes of the DIVUW
instruction, depending on the division and the resulting quotient:
Case 1: If the quotient is less than 65536, then the quotient is left in the HL register, the
Overflow and Sign flags are cleared to O, and the Zero flag is set according to the value of
the quotient.
Case 2: If the divisor is zero, the HL register is unchanged, the Zero and Overflow flags are
set to 1, and the Sign flag is cleared to 0.
Case 3: If the quotient is greater than or equal to 65536, the HL register is unchanged, the
Overflow flag is set to 1, and the Sign and Zero flags are cleared to 0.
Flags: S: Cleared
Z: Setif the quotient or divisor is zero; cleared otherwise
H: Unaffected
V: Setif the divisor is zero or if the computed quotient is greater than or equal to 65536;
cleared otherwise
N: Unaffected
C: Unaffected
Addressing Execute
Mode Syntax Instruction Format Time Note
R: DIVUW [HL,]R 11101101 11001011 101110rr 20
RX: DIVUW [HL,]RX 11101101 11001011 1011110y 20
IM: DIVUW [HL,]nn 11101101 11001011 10111111 -n(low)- -n(high) 20
X: DIVUW [HL,1(XY+d) 11y11101 11001011 ——d— 10111010 22+r |

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL

y: Ofor IX, 1 for IY

5-47

. 2380
@ ZILCE USER'S MANUAL

El
ENABLE INTERRUPTS

El [n]

Operation: if (n is present) then begin
for i=1to 4 begin
if (n(i) = 1) then begin
IER(i-1) « 1

end
end
if (n(0) = 1) then begin
SR(5) « 1
end
end
else begin
SR(5) « 1
end

If an argument is present, enable the selected interrupts by setting the appropriate enable
bits in the Interrupt Enable Register, and then set the Interrupt Enable Flag (IEF1) in the
Select Register (SR) if the least-significant bit of the argument is set, enabling maskable
interrupts. Bits 7-5 of the argument are ignored.

If no argument is present, IEF1 in the SR is set to 1, enabling maskable interrupts.

Note that during the execution of this instruction and the following instruction, maskable
interrupts are not sampled.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected
Addressing Execute
Mode Syntax Instruction Format Time Note
El 11111011 2
Eln 11011101 11111011 —n— 2

5-49

N 2iLas

™

USER'S MANUAL

Operation:

Flags:

Addressing
Mode
R:

EX
EXCHANGE ADDRESSING REGISTER WITH TOP OF STACK

EX (SP),dst dst = HL, IX, IY

if (LW) then begin
(SP+3) < dst(31-24)
(SP+2) « dst(23-16)
end

(SP+1) « dst(15-8)

(SP) © dst(7-0)

The contents of the destination register are exchanged with the top of the stack. In Long
Word mode this exchange is two words; otherwise it is one word.

S: Unaffected

Z: Unaffected

H: Unaffected

V: Unaffected

N: Unaffected

C: Unaffected

Execute

Syntax Instruction Format Time Note
EX (SP),HL 11100011 3+r+w L

EX (SP),XY 11y11101 11100011 3+r+w L

Field Encodings: y: O for IX, 1 for IY

5-51

USER'S MANUAL

Operation:

Flags:

Addressing
Mode
R:

EX
EXCHANGE REGISTER WITH ALTERNATE REGISTER (BYTE)

EX dst,src src =R
dst &> src

The contents of the destination are exchanged with the contents of the source, where the
destination is a register in the primary bank and the source is the corresponding register in
the alternate bank

Unaffected
Unaffected
Unaffected
Unaffected
Unaffected
Unaffected

Execute
Syntax Instruction Format Time Note
EXRR’ 11001011 00110-r- 3

Field Encoding: r: per convention

5-53

A 2iLa5 USER's Mﬂg?\:
EX
EXCHANGE WITH ACCUMULATOR

EX A,src src =R, IR
Operation: dst & src

The contents of the accumulator are exchanged with the contents of the source.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected
Addressing Execute
Mode Syntax Instruction Format Time Note
R: EXAR 11101101 00-r-111 3
IR: EX A,(HL) 11101101 00110111 3+r+wW

Field Encodings: r: per convention

5-55

RN 2La5 Ustr's MaaUAL
EXTS
EXTEND SIGN (BYTE)
EXTS [A]
Operation: L « A
if (A(7)=0) then begin
H “ 00h
if (LW) then begin
HL(31-16) « 0000h
end
end
else begin
H ° FFh
if (LW) then begin
HL(31-16) « FFFFh
end
end
The contents of the accumulator, considered as a signed, two's complement integer, are
sign-extended to 16 bits and the result is stored in the HL register. The contents of the
accumulator are unaffected. This instruction is useful for conversion of short signed
operands into longer signed operands.
Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected
Addressing Execute
Mode Syntax Instruction Format Time Note
EXTS [A] 11101101 01100101 3 L

5-57

AN 2iLaB

™

USER'S MANUAL

Operation:

Flags:

Addressing
Mode

EXX
EXCHANGE REGISTERS WITH ALTERNATE BANK

EXX
SR(8) <« NOT SR(8)
Bit 8 of the Select Register (SR), which controls the selection of primary or alternate bank

for the BC, DE, and HL registers, is complemented, thus effectively exchanging the BC, DE,
and HL registers between the two banks.

S: Unaffected

Z: Unaffected

H: Unaffected

V: Unaffected

N: Unaffected

C: Unaffected

Execute

Syntax Instruction Format Time Note
EXX 11011001 3

5-59

™

. 2380
@ Z'Im USER'S MANUAL

EXXY
EXCHANGE IY REGISTER WITH ALTERNATE BANK

EXXY
Operation: SR(24) « NOT SR(24)

Bit 24 of the Select Register (SR), which controls the selection of primary or alternate bank
forthe 1Y register, is complemented, thus effectively exchanging the lY register between the

two banks.
Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected
Addressing Execute
Mode Syntax Instruction Format Time Note
EXXY 11111101 11011001 3

5-61

Z380™

N 2iLas USER'S MANUAL

IM
INTERRUPT MODE SELECT

IMp p=0,1,23
Operation: SR(4-3) « p
The interrupt mode of operation is set to one of four modes. (See Chapter 6 for a description

of the various modes for responding to interrupts). The current interrupt mode can be read
from the Select Register (SR).

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected
Addressing Execute
Mode Syntax Instruction Format Time Note
IM p 11101101 010pp110 4

Field Encodings: pp: 00 for Mode 0, 01 for Mode 3, 10 for Mode 1, 11 for Mode 2

5-63

. 2380™
N 2iLa5 USER'S MANUAL

INW
INPUT (WORD)

INW dst,(C) dst=R
Operation: dst(15-0) « (C)

The word of data from the selected peripheral is loaded into the destination register. During
the 1/O transaction, the contents of the 32-bit BC register are placed on the address bus.

Flags: S: Setif the input data Is negative; cleared otherwise
Z. Setif the input data is zero; cleared otherwise
H: Cleared
P: Set if the input data has even parity; cleared otherwise
N: Cleared
C: Unaffected
Addressing Execute
Mode Syntax Instruction Format Time Note
R: INW R,(C) 11011101 01rrr000 2+i

Field Encodings: rrr: 000 for BC, 010 for DE, 111 for HL

5-65

. 2380
@ ZILCE USER'S MANUAL

INO
INPUT (FROM PAGE 0)

INO dst,(n) dst=R
Operation: dst « (n)

The byte of data from the selected on-chip peripheralis loaded into the destination register.
No external I/O transaction will be generated as a result of this instruction, although the

1/0O address will appear on the address bus while this internal read is occurring. The
peripheral address is placed on the low byte of the address bus and zeros are placed on
all other address lines. When the second opcode byte is 30h no data is stored in a
destination; only the flags are updated.

Flags: S: Set if the input data is negative; cleared otherwise
Z: Setif the input data is zero; cleared otherwise
H: Cleared
P: Setif the input data has even parity; cleared otherwise
N: Cleared
C: Unaffected
Addressing Execute
Mode Syntax Instruction Format Time Note
R: INO R,(n) 11101101 00 -r- 000 —n— 3+i
none: INO (n 11101101 00110000 —n— 3+i

Field Encodings: r: per convention

5-67

= Z380
@ lem USER'S MANUAL

INAW
INPUT DIRECT FROM PORT ADDRESS (WORD)

INAW HL,(nn)
Operation: HL(15-0) « (nn)
The word of data from the selected peripheral is loaded into the HL register. During the

1/O transaction, the peripheral address from the instruction is placed on the address bus.
Any bytes of address not specified in the instruction are driven on the address lines as all

zeros
Flags: S Unaffected
V4 Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
Cc Unaffected
Addressing Execute
Mode Syntax Instruction Format Time Note
INAW HL,(nn) 11111101 11011011 -n(low)- -n(high) 3+i |

5-69

USER'S MANUAL

Operation:

Flags:

Addressing
Mode

R:
RX:

INC[W]
INCREMENT (WORD)

INC[W] dst dst =R, RX

if (XM) then begin

dst(31-0) < dst(31-0) + 1
end

else begin
dst(15-0) « dst(15-0) + 1
end

The destination operand is incremented by one and the sum is stored in the destination.
Two's complement addition is performed. Note that the length of the operand is controlled
by the Extended/Native mode selection, which is consistent with the manipulation of an
address by the instruction.

S: Unaffected

Z: Unaffected

H: Unaffected

V: Unaffected

N: Unaffected

C: Unaffected

Execute

Syntax Instruction Format Time Note
INC[W] R 00rr0011 2 X
INC[W] RX 11y11101 00100011 2 X

Field Encodings: rr: 00 for BC, 01 for DE, 10 for HL, 11 for SP

y: OforIX, 1 for IY

5-71

N 2iL.as Users MAUAL
INDW
INPUT AND DECREMENT (WORD)
INDW
Operation: (HL) « (DE)
BC(15-0) « BC(15-0)-1
HL « HL-2

Flags:

Addressing
Mode

This instruction is used for block input of strings of data. During the I/O transaction the 32-
bit DE register is placed on the address bus.

First the word of data from the selected peripheral is loaded into the memory location
addressed by the HL register. Then the BC register, used as a counter, is decremented by
one. The HL register is then decremented by two, thus moving the pointer to the next
destination for the input.

S: Unaffected
Z: Setif the result of decrementing BC is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected
Execute
Syntax Instruction Format Time Note
INDW 11101101 11101010 2+i+wW

5-73

RN 2iLaB Vst MAMIAL
INDRW
INPUT, DECREMENT AND REPEAT (WORD)
INDRW
Operation: repeat until (BC=0) begin
(HL) « (DE)
BC(15-0) « BC(15-0) - 1
HL « HL-2
end

Flags:

Addressing
Mode

This instruction is used for block input of strings of data. The string of input data from the
selected peripheral is loaded into memory at consecutive addresses, starting with the
location addressed by the HL register and decreasing. During the 1/O transaction the
32-bit DE register is placed on the address bus.

First the BC register, used as a counter, is decremented by one. First the word of data from
the selected peripheral is loaded into the memory location addressed by the HL register.
Then the BC register, used as a counter, is decremented by one. The HL register is then
decremented by two, thus moving the pointer to the next destination for the input. If the result
of decrementing the BC register is 0, the instruction is terminated, otherwise the sequence
isrepeated. Ifthe BC register contains 0 at the start of the execution of this instruction, 65536
bytes are input.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value at the start of this instruction is saved before the interrupt requestis accepted,
so that the instruction can be properly resumed.

S Unaffected
Z: Setif the result of decrementing BC is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected
Execute
Syntax Instruction Format Time Note
INDRW 11101101 11111010 n X (2+i+w)

5-75

Z2380™

N 2iLa5 USER'S MANUAL
INIW
INPUT AND INCREMENT (WORD)
INIW
Operation: (HL) «~ (DE)
BC(15-0) « BC(15-0)-1
HL « HL+2
This instruction is used for block input of strings of data.
During the I/O transaction the 32-bit DE register is placed on the address bus.
First the word of data from the selected peripheral is loaded into the memory location
addressed by the HL register. Then the BC register, used as a counter, is decremented by
one. The HL register is then incremented by two, thus moving the pointer to the next
destination for the input.
Fiags: S: Unaffected
Z: Setif the result of decrementing BC is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected
Addressing Execute
Mode Syntax Instruction Format Time Note
INIW 11101101 11100010 2+i+w

5-77

N 2iLa5s

USER'S MANUAL

Operation:

Flags:

Addressing
Mode

INIRW
INPUT, INCREMENT AND REPEAT (WORD)

INIRW
repeat until (BC=0) begin
(HL) « (DE) .
BC(15-0) « BC(15-0) - 1
HL « HL + 2
end

This instruction is used for block input of strings of data. The string of input data from the
selected peripheral is loaded into memory at consecutive addresses, starting with the
location addressed by the HL register and increasing. During the I/O transaction the 32-bit
DE register is placed on the address bus.

First the word of data from the selected peripheral is loaded into the memory location
addressed by the HL register. Then the BC register, used as a counter, is decremented by
one. The HL register is then incremented by two, thus moving the pointer to the next
destination for the input. If the result of decrementing the BC register is 0, the instruction is
terminated, otherwise the sequence is repeated. If the BC register contains O at the start of
the execution of this instruction, 65536 bytes are input.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value at the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

S: Unaffected
Z: Setif the result of decrementing BC is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected
Execute
Syntax Instruction Format Time Note
INIRW 11101101 11110010 n X (2+i+w)

5-79

2380™

N 2iLaBs USER'S MANUAL
JR
JUMP RELATIVE
JR [cc,]dst dst=RA
Operation: if (cc is TRUE) then begin

Flags:

Addressing
Mode
RA:

dst « SIGN EXTEND dst

if (XM) then begin
PC(31-0) « PC(31-0) + dst(31-0)
end

else begin
PC(15-0) « PC(15-0) + dst(15-0)
end

end

A conditional Jump transfers program control to the destination address if the setting of a
selected flag satisfies the condition code “cc” specified in the instruction; an unconditional
Jump always transfers control to the destination address. Either the Zero or Carry flag can
be tested for the conditional Jump. If the jump is taken, the Program Counter (PC) is loaded
with the destination address; otherwise the instruction following the Jump Relative instruc-
tion is executed.

The destination address is calculated using relative addressing. The displacement in the
instruction is added to the PC value for the instruction following the JR instruction, not the
value of the PC for the JR instruction.

These instructions employ either an 8-bit, 16-bit, or 24-bit signed, two’s complement
displacement from the PC to permit jumps within a range of -126 to +129 bytes, -32,765 to
+32,770 bytes, or -8,388,604 to +8,388,611 bytes from the location of this instruction.

S: Unaffected

Z: Unaffected

H: Unaffected

V: Unaffected

N: Unaffected

C: Unaffected

Execute

Syntax Instruction Format Time
JR CC,addr 001cc000 —disp— 2

JR addr 00011000 —disp— 2

JR CC,addr 11011101 001cc000 -d(low)- -d(high) 2

JR addr 11011101 00011000 -d(low)- -d(high) 2

JR CC,addr 11111101 001¢c000 -d(low)- -d(mid)- -d(high) 2

JR addr 11111101 00011000 -d(low)- -d(mid)- -d(high) 2

Field Encodings: cc: 00 for NZ, 01 for Z, 10 for NC, 11 for C

ote

XX XX XX2Z2

5-81

2380™

N 2iLas USER's MANUAL
LD
LOAD IMMEDIATE (BYTE)
LD dst,n dst =R, RX, IR, X
Operation: dst « n
The byte of immediate data is loaded into the destination.
Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected
Addressing Execute
Mode Syntax Instruction Format Time Note
R: . LDR.n 00-r-110 —n— 2
RX: LD RX,n 11y11101 0010w110 —n— 2
IR: LD (HL),n 00110110 —n— 3+w
X: LD (XY+d),n 11y11101 00110110 —d— —n— 5+w |

Field Encodings: r: per convention
y: OforiX, 1 for Y
w: O for high byte, 1 for low byte

5-83

N 2iLa5

™

USER'S MANUAL

Operation:

Flags:

Addressing
Mode
IR:

LDW dst,nn dst=1IR

if (LW) then begin
dst(31-0) « nn
end

else begin
dst(15-0) « nn

end

The word of immediate data is loaded into the destination.

S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected
Syntax Instruction Format
LDW (IR),nn 11101101 00pp0110 -n(low)- -n(high)

Field Encodings: pp: 00 for BC, 01 for DE, 11 for HL

LDW
LOAD IMMEDIATE (WORD)

Execute
Time Note
3+w I, L

5-85

™

. 239
@ Z'Lm USER'S MANUAL

LD[W]
LOAD REGISTER (WORD)

LD[W] dst,src dst=R
src = R, RX, IR, DA, X, SR
or
dst =R, RX, IR, DA, X, SR
src =R

Operation: if (LW) then begin
dst(31-0) « src(31-0)
end
else begin
dst(15-0) <« src(15-0)
end

The contents of the source are loaded into the destination.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected
Load into Register
Addressing Execute
Mode Syntax Instruction Format Time Note
R: LD Rd,Rs 11rs1101 00rd0010 2 L
RX: LD R,RX 11y11101 00rr1011 2 L
IR: LD R,(IR) 11011101 00rr11ri 2+r1 L
LD RX,(IR) 11y11101 00ri0011 2+r L
DA: LD HL,(nn) 00101010 -n(low)- -n(high) 3+r I, L
LD R,(nn) 11101101 01ra1011 -n(low)- -n(high) 3+r I, L
LD RX,(nn) 11y11101 00101010 -n(low)- -n(high) 3+r I, L
X: LD R,(XY+d) 11y11101 11001011 ——d— 00rr0011 4+4r I, L
LD IX,(1Y+d) 11111101 11001011 ——d— 00100011 4+r I, L
LD IY,(IX+d) 11011101 11001011 ——d— 00100011 4+r I, L
SR: LD R,(SP+d) 11011101 11001011 ——d— 00rr0001 4+r1 I, L
LD RX,(SP+d) 11y11101 11001011 ——d— 00100001 4+r I, L

5-87

USER'S MANUAL

LD dst,src dst = SP
src = R, RX, IM, DA
or
dst = DA
src = SP

Operation: if (LW) then begin
dst(31-0) « src(31-0)
end
else begin
dst(15-0) « src(15-0)
end

The contents of the source are loaded into the destination.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected
Load into Stack Pointer
Addressing
Mode Syntax Instruction Format
R: LD SP,HL 11111001
RX: LD SP,RX 11y11101 11111001
IM: LD SP,nn 00110001 -n(low)- -n(high)
DA: LD SP,(nn) 11101101 01111011 -n(low)- -n(high)

Field Encodings: y: O for IX, 1 for IY

Load from Stack Pointer

Addressing
Mode Syntax Instruction Format
DA: LD (nn),SP 11101101 01110011 -n(low)- -n(high)

LD

LOAD STACK POINTER

Execute
Time

2

2

2

3+r

Execute
Time
4+w

Note
I, L

5-89

. 238
@ ZILGE USER'S MANUAL

LD
LOAD INTO | OR R REGISTER (BYTE)

LD dst,src dst=1,R
src=A

Operation: dst « src

The contents of the accumulator are loaded into the destination. Note that the Rregister does
not contain the refresh address and is not modified by refresh transactions.

Unaffected
Unaffected
Unaffected
Unaffected
Unaffected
Unaffected

Flags:

QZSING

Addressing Execute
Mode Syntax Instruction Format Time Note
R: LD LA 11101101 01000111 2

LDRA 11101101 01001111 2

5-91

USER'S MANUAL

LDCTL
LOAD CONTROL REGISTER (BYTE)

LDCTL dst,src dst = DSR, XSR, YSR
src =A, IM
or
dst=A
src = DSR, XSR, YSR
or
dst=SR
src=A, IM
Operation: if (dst = SR) then begin
SR(31-24) « src
SR(23-16) « src
SR(15-8) « src
end
else begin
dst « src
end
The contents of the source are loaded into the destination.
Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected
Load into Control Register
Addressing Execute
Mode Syntax Instruction Format Time Note
R: LDCTL SR,A 11011101 11001000 4
LDCTL Rd,A 11991101 11011000 4
IM: LDCTL SR,n 11011101 11001010 ——n— 4
LDCTL Rd,n 11991101 11011010 ——n— 4
Field Encodings: qqg: 01 for XSR, 10 for DSR, 11 for YSR
Load from Control Register
Addressing Execute
Mode Syntax Instruction Format Time Note
R: LDCTL A,Rs 11gg1101 11010000 2

Field Encodings: qq: 01 for XSR, 10 for DSR, 11 for YSR

5-93

™

. 2380
N 2iLas USER'S MANUAL

LDCTL
LOAD INTO CONTROL REGISTER (WORD)

LDCTL dst,src dst = SR
src = HL

Operation: if (LW) then begin
dst(31-16) « HL(31-16)
end
else begin
dst(31-24) « HL(15-8)
dst(23-16) « HL(15-8)

end
dst(15-8) «— HL(15-8)
dst(0) « HL(0)

The contents of the HL register are loaded into the Select Register (SR). If Long Word mode
is not in effect the upper byte of the HL register is copied into the three most significant bytes
of the select register. This instruction does not modify the mode bits in the SR. There are
dedicated instructions to modify the mode bits.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected
Load from Control Register
Addressing Execute
Mode Syntax Instruction Format Time Note
R: LDCTL SR,HL 11101101 11001000 4 L

5-95

AN 2iLaB

USER'S MANUAL

Operation:

Flags:

Addressing
Mode

LDDW

LOAD AND DECREMENT (WORD)

LDDW

if (LW) then begin
(DE) «— (HL)
(DE+1) «— (HL+1)
(DE+2) «— (HL+2)
(DE+3) « (HL+3)
DE — DE-4
HL «— HL-4
BC(15-0) « BC(15-0) -4
end

else begin
(DE) «— (HL)
(DE+1) — (HL+1)
DE «— DE-2
HL «— HL-2
BC(15-0) « BC(15-0) -2
end

This instruction is used for block transfers of words of data. The word of data at the location
addressed by the HL register is loaded into the location addressed by the DE register. Both
the DE and HL registers are then decremented by two or four, thus moving the pointers to
the preceeding words in the array. The BC register, used as a byte counter, is then
decremented by two or four.

Both DE and HL should be even, to allow word transfers on the bus. BC must be even,
transferring an even number of bytes, or the operation is undefined.

S: Unaffected
Z: Unaffected
H: Cleared
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Cleared
C: Unaffected
Execute
Syntax Instruction Format Time Note
LDDW 11101101 11101000 3+r+w L

5-97

USER'S MANUAL

Operation:

Flags:

Addressing
Mode

LDDRW

repeat until (BC=0) begin
if (LW) then begin
(DE)
(DE+1)
(DE+2)
(DE+3)

TTTTTTY

(DE)

)
m
TTTTT

end

LDDRW
LOAD, DECREMENT AND REPEAT (WORD)

(HL)
(HL+1)
(HL+2)
(HL+3)
DE - 4

HL -4
BC(15-0) - 4

(HL)
(HL+1)

DE -2

HL -2
BC(15-0) - 2

Thisinstruction is used for block transfers of strings of data. The words of data atthe location
addressed by the HL register are loaded into memory starting at the location addressed by
the DE register. The number of words moved is determined by the contents of the BC
register. If the BC register contains zero when this instruction is executed, 65,5636 words are
transferred. The effect of decrementing the pointers during the transfer is important if the
source and destination strings overlap with the source string starting at a lower memory
address. Placing the pointers at the highest address of the strings and decrementing the
pointers ensures that the source string is copied without destroying the overlapping area.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value of the start of this instruction is saved before the interrupt request is
accepted,so that the instruction can be properly resumed.

Unaffected
Unaffected
Cleared
Cleared
Cleared
Unaffected

QZSIND

Syntax
LDDRW

Instruction Format
11101101 11111000

Execute
Time Note
nNX(3+r+w) L

5-99

N 2iLaB User's MaNUAL
LDIW
LOAD AND INCREMENT (WORD)
LDIW
Operation: if (LW) then begin
(DE) « (HL)
(DE+1) «— (HL+1)
(DE+2) «— (HL+2)
(DE+3) - (HL+3)
DE — DE +4
HL «— HL + 4
BC(15-0) « BC(15-0)-4
end
else begin
(DE) «— (HL)
(DE+1) « (HL+1)
DE «— DE +2
HL « HL +2
BC(15-0) « BC(15-0) -2
end

Flags:

Addressing
Mode

This instruction is used for block transfers of words of data. The word of data at the location
addressed by the HL register is loaded into the location addressed by the DE register. Both
the DE and HL registers are then incremented by two or four, thus moving the pointers to
the succeeding words in the array. The BC register, used as a byte counter, is then
decremented by two or four.

Both DE and HL should be even, to allow word transfers on the bus. BC must be even,
transferring an even number of bytes, or the operation is undefined.

S: Unaffected

Z: Unaffected
H: Cleared
V: Setif the result of decrementing BC is not equal to zero; cleared otherwise
N: Cleared
C: Unaffected
Execute
Syntax Instruction Format Time Note
LDIwW 11101101 11100000 3+r+w L

5-101

™

. 2380
N 2iLas USER'S MANUAL

LDIRW
LOAD, INCREMENT AND REPEAT (WORD)

LDIRW

Operation: repeat until (BC=0) begin
if (LW) then begin

(DE) «— (HL)
(DE+1) «— (HL+1)
(DE+2) «— (HL+2)
(DE+3) «— (HL+3)
DE «— DE +4
HL «— HL + 4
BC(15-0) «— BC(15-0) - 4
end

else begin
(DE) «— (HL)
(DE+1) «— (HL+1)
DE — DE +2
HL — HL + 2
BC(15-0) «— BC(15-0) -2
end

end

This instruction is used for block transfers of strings of data. The words of data at the location
addressed by the HL register are loaded into memory starting at the location addressed by
the DE register. The number of words moved is determined by the contents of the BC
register. If the BC register contains zero when this instruction is executed, 65,536 words are
transferred. The effect of incrementing the pointers during the transfer is important if the
source and destination strings overlap with the source string starting at a higher memory
address. Placing the pointers at the lowest address of the strings and incrementing the
pointers ensures that the source string is copied without destroying the overlapping area.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value of the start of this instruction is save before the interrupt request is
accepted,so that the instruction can be properly resumed.

Flags: S: Unaffected
Z: Unaffected
H: Cleared
V: Cleared
N: Cleared
C: Unaffected
Addressing Execute
Mode Syntax Instruction Format Time Note
LDIRW 11101101 11110000 (3+r+w)n L

5-103

@ 2ilanL USER'S MANUAL
MTEST
MODE TEST
MTEST
Operation: S « SR(7)
Z « SR(6)
C « SR(1)
The three mode control bits in the Select Register (SR) are transferred to the flags. This
allows the program to determine the state of the machine.
Flags: S: Set if Extended mode is in effect; cleared otherwise
Z: Setif Long word mode is in effect; cleared otherwise
H: Unaffected
V: Unaffected
N: Unaffected
C: Setif Lock mode is in effect; cleared otherwise
Addressing Execute
Mode Syntax Instruction Format Time Note
MTEST 11011101 11001111 2

5-105

. 2380
@ lem USER'S MANUAL

MULTUW
MULTIPLY UNSIGNED (WORD)

MULTUW [HL,]src src = R, RX, IM, X
Operation: HL(31-0) « HL(15-0) x src(15-0)

The contents of the HL register are multiplied by the source operand and the product is
stored in the HL register. The contents of the source are unaffected. Both operands are
treated as unsigned, binary integers.

The initial contents of the HL register are overwritten by the result. The Carry flag is set to
indicate that the upper word of the HL register is required to represent the result; if the Carry
flag is cleared, the product can be correctly represented in 16 bits and the upper word of
the HL register merely holds zero.

Flags: S: Cleared
Z: Setif the result is zero; cleared otherwise
H: Unaffected
V: Cleared
N: Unaffected
C: Setif the product is greater than or equal to 65536; cleared otherwise
Addressing Execute
Mode Syntax Instruction Format Time Note
R: MULTUW [HL,]R 11101101 11001011 1001 10rr 11
RX: MULTUW [HL,]RX 11101101 11001011 1001110y 11
IM: MULTUW [HL,]nn 11101101 11001011 10011111 -n(low)- -n(high) 11
X: MULTUW [HL,](XY+d) 11y11101 11001011 ——d— 10011010 13+4r |

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: Ofor X, 1 forlY

5-107

. 2380
N 2iLaB _ UsER's MANUAL

NEGW
NEGATE HL REGISTER (WORD)

NEGW [HL]
Operation: HL(15-0) <« -HL(15-0)

The contents of the HL register are negated, that is replaced by its two’s complement value.
Note that 8000h is, replaced by itself, because in two's complement representation the
negative number with the greatest magnitude has no positive counterpart; for this case, the
Overflow flag is set to 1.

Flags: S: Set if the result is negative; cleared otherwise
Z: Setif the result is zero; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Setifthe contentof the HL register was 8000h before the operation; cleared otherwise
N: Set
C: Setif the content of the HL register was not 0000h before the operation; cleared if the

content of the HL register was 0000h

Addressing Execute

Mode Syntax Instruction Format Time Note
NEGW [HL] 11101101 01010100 2

5-109

™

. 2380
@ ZILm USER'S MANUAL

OR
OR (BYTE)

OR [A]src src = R, RX, IM, IR, X
Operation: A « AORsrc

Alogical OR operation is performed between the corresponding bits of the source operand
and the accumulator and the result is stored in the accumulator. A 1 bit is stored wherever
either of the corresponding bits in the two operands is 1; otherwise a O bit is stored. The
contents of the source are unaffected.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if all bits of the result are zero; cleared otherwise
H: Cleared
P: Set if the parity is even; cleared otherwise
N: Cleared
C: Cleared
Addressing Execute
Mode Syntax Instruction Format Time Note
R: OR[AIR 10110-r- 2
RX: OR [A,]RX 11y11101 1011010w 2
IM: OR[A,In 11110110 —n— 2
IR: OR [A,](HL) 10110110 2+r1
X: OR [A)(XY+d) 11y11101 10110110 ——d— 4+r |

Field Encodings: r: per convention
y: Ofor X, 1forlY
w: O for high byte, 1 for low byte

5-111

™

USER'S MANUAL

Operation:

Flags:

Addressing
Mode

OTDM

OUTPUT DECREMENT MEMORY

OTDM

(C) « (HL)
C « C-1
B « B-1
HL « HL-1

This instruction is used for block output of strings of data to on-chip peripherals. No external
I/O transaction will be generated as a result of this instruction, although the I/O address will
appear on the address bus and the write data will appear on the data bus while this internal
write is occurring. The peripheral address is placed on the low byte of the address bus and
zeros are placed on all other address lines. The byte of data from the memory location
addressed by the HL register is loaded to the on-chip I/O port addressed by the C register.
The C register, holding the port address, is decremented by one to select the next output
port. The B register, used as a counter, is then decremented by one. The HL register is then
decremented by one, thus moving the pointer to the next source for the output.

S: Setif the result of decrementing B is negative; cleared otherwise

Z: Setif the result of decrementing B is zero; cleared otherwise

H: Set if there is a borrow from bit 4 during the decrement of the B register; cleared
otherwise

P: Set if the result of the decrement of the B register is even; cleared otherwise

N: Set if the most significant bit of the byte transferred was a 1; cleared otherwsie

C: Setif there is a borrow from the most significant bit during the decrement of the B
register; cleared otherwise

Execute
Syntax Instruction Format Time Note
OTDM 11101101 10001011 2+r+0

5-113

N 2iLas

USER'S MANUAL

Operation:

Flags:

Addressing
Mode

OTDR
OUTPUT, DECREMENT AND REPEAT (BYTE)

OTDR

repeat until (B=0) begin
B « B-1
(C) « (HL)
HL « HL-1
end

This instruction is used for block output of strings of data. The string of output data is loaded
into the selected peripheral from memory at consecutive addresses, starting with the
location addressed by the HL register and decreasing. During the 1/O transaction the 32-
bit BC register is placed on the address bus. Note that the B register contains the loop count
for this instruction so that A(15-8) are not useable as part of a fixed port address. The
decremented B register is used in the address.

First the B register, used as a counter, is decremented by one. The byte of data from the
memory location addressed by the HL register is loaded into the selected peripheral. The
HL register is then decremented by one, thus moving the pointer to the next source for the
output. If the result of decrementing the B register is 0, the instruction is terminated,
otherwise the sequence is repeated. If the B register contains O at the start of the execution
of this instruction, 256 bytes are output.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value at the start of this instruction is saved before the interruptrequestis accepted,
so that the instruction can be properly resumed.

Unaffected

Set if the result of decrementing B is zero; cleared otherwise
Unaffected

Unaffected

Set

Unaffected

Execute
Syntax Instruction Format Time Note
OTDR 11101101 10111011 2+41+0

5-115

N 205

™

USER'S MANUAL

Operation:

Flags:

Addressing
Mode

OTIM

OUTPUT INCREMENT MEMORY

OTIM

(C) « (HL)
C « C+1
B « B-1
HL « HL+1

This instruction is used for block output of strings of data to on-chip peripherals. No external
I/O transaction will be generated as a result of this instruction, although the I/O address will
appear on the address bus and the write data will appear on the data bus while this internal
write is occurring. The peripheral address is placed on the low byte of the address bus and
zeros are placed on all other address lines. The byte of data from the memory location
addressed by the HL register is loaded to the on-chip /O port addressed by the C register.
The Cregister, holding the portaddress, is incremented by one to select the nextoutput port.
The B register, used as a counter, is then decremented by one. The HL register is then
incremented by one, thus moving the pointer to the next source for the output.

S: Setif the result of decrementing B is negative; cleared otherwise

Z: Set if the result of decrementing B is zero; cleared otherwise

H: Set if there is a borrow from bit 4 during the decrement of the B register; cleared
otherwise

P: Setif the result of the decrement of the B register is even; cleared otherwise

N: Set if the most significant bit of the byte transferred was a 1; cleared otherwise

C: Setif there is a borrow from the most significant bit during the decrement of the B
register; cleared otherwise

Execute
Syntax Instruction Format Time Note
OTIM 11101101 10000011 2+r+0

5-117

Z380™
USER'S MANUAL

Operation:

Flags:

Addressing
Mode

OTIR
OUTPUT, INCREMENT AND REPEAT (BYTE)

OTIR

repeat until (B=0) begin
B « B-1
(C) « (HL)
HL « HL+1
end

This instruction is used for block output of strings of data. The string of output data is loaded
into the selected peripheral from memory at consecutive addresses, starting with the
location addressed by the HL register and increasing. During the 1/O transaction the 32-bit
BC register is placed on the address bus. Note that the B register contains the loop count
for this instruction so that A(15-8) are not useable as part of a fixed port address. The
decremented B register is used in the address.

First the B register, used as a counter, is decremented by one. The byte of data from the
memory location addressed by the HL register is loaded into the selected peripheral. The
HL register is then incremented by one, thus moving the pointer to the next source for the
output. If the result of decrementing the B register is O, the instruction is terminated,
otherwise the sequence is repeated. If the B register contains 0 at the start of the execution
of this instruction, 256 bytes are output.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value at the start of this instruction is saved before the interruptrequest is accepted,
so that the instruction can be properly resumed.

Unaffected

Set if the result of decrementing B is zero; cleared otherwise
Unaffected

Unaffected

Set

Unaffected

Execute
Syntax Instruction Format Time Note
OTIR 11101101 10110011 2+r+0

5-119

™

USER'S MANUAL

OUT (C),src src=R, M

Operation: (C) « src

ouT

OUTPUT (BYTE)

The byte of data from the source is loaded into the selected peripheral. During the 1/O
transaction, the contents of the 32-bit BC register are placed on the address bus.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected
Addressing
Mode Syntax Instruction Format
R: OUT (C),R 11101101 O1 -r- 001
IM: OUT (C),n 11101101 01110001 —n—

Field Encodings: r: per convention

Execute

Time Note
3+0

3+0

5-121

Z380™

N 2iLaBs USER's MANUAL
ouT
OUTPUT ACCUMULATOR

OuT (n),A

Operation: n) « A

Flags:

Addressing
Mode

The byte of data from the accumulator is loaded into the selected peripheral. During the
1/0 transaction, the 8-bit peripheral address from the instruction is placed on the low byte
of the address bus, the contents of the accumulator are placed on address lines A(15-8),
and the high-order address lines are all zeros.

S: Unaffected

Z Unaffected

H: Unaffected

V: Unaffected

N: Unaffected

C: Unaffected

Execute

Syntax Instruction Format Time Note
OUT (n),A 11010011 ——n— 3+0

5-123

. 2380™
N 2iLaBs USER'S MANUAL

OUTA
OUTPUT DIRECT TO PORT ADDRESS (BYTE)

OUT (nn),A
Operation: (nn) « A
The byte of data from the accumulator is loaded into the selected peripheral. During the

1/O transaction, the peripheral address from the instruction is placed on the address bus.
Any bytes of address not specified in the instruction are driven on the address lines are all

zeros.
Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected
Addressing Execute
Mode Syntax Instruction Format Time Note
OUTA (nn),A 11101101 11010011 -n(low)- -n(high) 2+0 |

5-125

™

@ 2ilaB USER'S MANUAL
OouTD
OUTPUT AND DECREMENT (BYTE)
OUTD
Operation: B « B-1
(C) « (HL)
HL « HL-1
This instruction is used for block output of strings of data. During the 1/O transaction the
32-bit BC register is placed on the address bus. Note that the B register contains the loop
count for this instruction so that A15-A8 are not useable as part of a fixed port address. The
decremented B register is used in the address.
First the B register, used as a counter, is decremented by one. The byte of data from the
memory location addressed by the HL register is loaded into the selected peripheral. The
HL register is then decremented by one, thus moving the pointer to the next source for the
output.
Flags: S: Unaffected
Z: Setif the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected
Addressing Execute
Mode Syntax Instruction Format Time Note
OuUTD 11101101 10101011 2+r+0

5-127

Z380™

@ 2ilan USER'S MANUAL
OuUTI
OUTPUT AND INCREMENT (BYTE)
OouTl
Operation: B « B-1
(C) « (HL)
HL « HL+1

Flags:

Addressing
Mode

This instruction is used for block output of strings of data. During the I/O transaction the 32-
bit BCregister is placed on the address bus. Note that the B register contains the loop count
for this instruction so that A15-A8 are not useable as part of a fixed port address. The
decremented B register is used in the address.

First the B register, used as a counter, is decremented by one. The byte of data from the
memory location addressed by the HL register is loaded into the selected peripheral. The
HL register is then incremented by one, thus moving the pointer to the next source for the
output.

S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected
Execute
Syntax Instruction Format Time Note
OUTI 11101101 10100011 2+4r+0

5-129

™

USER'S MANUAL

Operation:

Flags:

Addressing
Mode

POP
POP ACCUMULATOR

POP dst dst = AF
F « (SP)
A « (SP+1)
SP «— SP+2
if (LW) then begin

SP « SP+2

end
The contents of the memory location addressed by the Stack Pointer (SP) are loaded into
the destination in ascending byte order from ascending address memory locations. For this
instruction, the Flag register is the least significant byte, followed by the Accumulator. The
SP is then incremented by two (by four in the Long Word mode). Note that in the Long Word
mode only one word is read from memory, although the SP is in fact incremented by four.
S: Loaded from (SP)
Z: Loaded from (SP)
H: Loaded from (SP)
V: Loaded from (SP)
N: Loaded from (SP)
C: Loaded from (SP)

Execute

Syntax Instruction Format Time Note
POP AF 11110001 2+r L

5-131

U

. 2380
@ ZILGB USER'S MANUAL

POP
POP REGISTER
POP dst dst=R, RX
Operation: if (LW) then begin
dst(7-0) « (SP)
dst(15-8) « (SP+1)
dst(23-16) « (SP+2)
dst(31-24) « (SP+3)
SP « SP+4
end
else begin
dst(7-0) « (SP)
dst(15-8) « (SP+1)
SP — SP +2
end
The contents of the memory location addressed by the Stack Pointer (SP) are loaded into
the destination in ascending byte order from ascending address memory locations. The SP
is then incremented by two (by four in the Long Word mode).
Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected
Addressing Execute
Mode Syntax Instruction Format Time Note
R: POP R 11rr 0001 1+r L
RX: POP RX 11y11101 11100001 1+r L

Field Encodings: rr: 00 for BC, 01 for DE, 10 for HL
y: OforIX, 1 forlY

5-133

N 2iLaB

USER'S MANUAL

Operation:

Flags:

Addressing
Mode

PUSH
PUSH CONTROL REGISTER

PUSH src src = SR

if (LW) then begin
SP « SP-4
(SP) « src(7-0)
(SP+1) « src(15-8)

(SP+2) « src(23-16)
(SP+3) « src(31-24)
end

else begin

SP « SP-2
(SP) « src(7-0)
(SP+1) « src(15-8)
end

The Stack Pointer (SP) is decremented by two (by four in Long Word mode) and the source
is loaded into the memory locations addressed by the SP in ascending byte order in
ascending address memory locations. The contents of the source are unaffected.

S: Unaffected
Z. Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected
Execute
Syntax Instruction Format Time Note
PUSH SR 11101101 11000101 3+w L

5-135

RN 2iLa05

USER'S MANUAL

PUSH

PUSH REGISTER

PUSH src src = R, RX

Operation: if (LW) then begin
SP « SP-4
(SP) « src(7-0)
(SP+1) « src(15-8)
(SP+2) « src(23-16)
(SP+3) « src(31-24)
end
else begin
SP « SP-2
(SP) « sre(7-0)
(SP+1) « src(15-8)
end

The Stack Pointer (SP) is decremented by two (by four in Long Word mode) and the source
is loaded into the memory locations addressed by the SP in ascending byte order in
ascending address memory locations. The contents of the source are unaffected.

Flags: S: Unaffected

Z: Unaffected

H: Unaffected

V: Unaffected

N: Unaffected

C: Unaffected
Addressing Execute
Mode Syntax Instruction Format Time Note
R: PUSH R 11rr0101 3+w L
RX: PUSH RX 11y11101 11100101 3+w L

Field Encodings: rr: 00 for BC, 01 for DE, 10 for HL
y: Ofor IX, 1 for IY

5-137

. 238
&AQ 205 USER'S MANUAL

RESC
RESET CONTROL BIT

RESC mode mode = LCK, LW

Operation: if (mode = LCK) then begin
SR(1) « O
end
else begin
SR(6) « O
end

When reseting Lock mode (LCK), the LCK bit (bit 1) in the Select Register (SR) is set to O,
enabling external bus requests. Note that these requests cannot be granted until after the
instruction has been executed, and that one or more of the succeeding instructions may also
have been fetched for decoding before this instruction has been executed.

When reseting Long Word mode (LW), the LW bit (bit 6) in the SR is set to 0, selecting 16-
bit words. When using 16-bit words, all word load operations transfer 16 bits.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected
Addressing Execute
Mode Syntax Instruction Format Time Note
RESC mode 11mm1101 11111111 4

Field Encodings: mm: 01 for LW, 10 for LCK

5-139

. 2380
@ 2ilaiL USER'S MANUAL

RETB
RETURN FROM BREAKPOINT

Operation: PC (81-0) « SPC (31-0)

This instruction is used to return to a previously executing procedure at the end of a
breakpoint. The contents of the Shadow Program Counter (SPC), which holds the address
of the next instruction of the previously executing procedure, are loaded into the Program
Counter (PC).

Note that maskable interrupts (if IEF1 is set) and non-maskable interrupt are enabled after
the instruction following RETB is executed.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected

Addressing Execute
Mocie Syntax Instruction Format Time Note
RETB 11101101 01010101 2

5-141

™

. 2380
@ le—m USER'S MANUAL

RETN
RETURN FROM NONMASKABLE INTERRUPT
RETN
Operation: if (XM) then begin
PC(7-0) « (SP)
PC(15-8) « (SP+1)
PC(23-16) « (SP+2)
PC(31-24) « (SP+3)
SP « SP+4
end
else begin
PC(7-0) « (SP)
PC(15-8) « (SP+1)
SP «— SP +2
end
IEF1 « IEF2

This instruction is used to return to a previously executing procedure at the end of a
procedure entered by a nonmaskable interrupt. The contents of the location addressed by
the Stack Pointer (SP) are popped into the Program Counter (PC), thereby specifying the
location of the next instruction to be executed. The previous setting of the interrupt enable
bit is restored by execution of this instruction.

Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected
Addressing Execute
Mode Syntax Instruction Format Time Note
RETN 11101101 01000101 2+4r X

5-143

. 2380
@ ij USER'S MANUAL

RLW
ROTATE LEFT (WORD)
RLW dst dst = R, RX, IR, X
Operation: tmp « dst
dst(0) « C
] « dst(15)
dst(n+1) <« tmp(n)forn=0to 14

The contents of the destination operand are concatenated with the Carry flag and together
they are rotated left one bit position. The most significant bit of the destination operand is
moved to the Carry flag and the Carry flag is moved to bit O of the destination.

Flags: S: Setif the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from the most significant bit was a 1; cleared otherwise
Addressing Execute
Mode Syntax Instruction Format Time Note
R: RLW R 11101101 11001011 000100rr 2
RX: RLW RX 11101101 11001011 0001010y 2
IR: RLW (HL) 11101101 11001011 00010010 2+r1
X: RLW (XY+d) 11y11101 11001011 ——d— 00010010 4+r |

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: OforIX, 1forlY

5-145

N 2iLaB

USER'S MANUAL

RLC dst

Operation: tmp
Cc
dst(
dst(

(_.
(—
0) «
n+1)

RLC

ROTATE LEFT CIRCULAR (BYTE)

dst=R, IR, X

dst

dst(7)

tmp(7)

tmp(n) forn=0to 6

The contents of the destination operand are rotated left one bit position. Bit 7 of the
destination operand is moved to the bit 0 position and also replaces the Carry flag.

Set if the most significant bit of the result is set; cleared otherwise
Set if the result is zero; cleared otherwise

Set if parity of the result is even; cleared otherwise

Set if the bit rotated from bit 7 was a 1; cleared otherwise

Flags: S:
Z:
H: Cleared
P:
N: Cleared
C:
Addressing
Mode Syntax
R: RLCR
IR: RLC (HL)
X: RLC (XY+d)

Field Encodings:

Execute
Instruction Format Time Note
11001011 00000-r- 2
11001011 00000110 2+r

11y11101 11001011 ——d— 00000110 4+ '

r: per convention
y: OforIX, 1 for IY

5-147

. 2380™
@ 2iLas USER'S MANUAL

RLCA
ROTATE LEFT CIRCULAR (ACCUMULATOR)
RLCA
Operation: tmp « A
C « A7)

A(0) « tmp(7)
A(n+1) « tmp(n)forn=0to 6

The contents of the accumulator are rotated left one bit position. Bit 7 of the accumulator is
moved to the bit 0 position and also replaces the Carry flag.

Flags: S: Unaffected
Z: Unaffected
H: Cleared
P: Unaffected
N: Cleared
C: Setif the bit rotated from bit 7 was a 1; cleared otherwise
Addressing Execute
Mode Syntax Instruction Format Time Note
RLCA 00000111 2

5-149

. Z380™
@ 2iLan USER'S MANUAL

RR
ROTATE RIGHT (BYTE)

RR dst dst=R, IR, X

Operation: tmp « dst
dst(7) « C
6] « dst(0)

dst(n) « tmp(n+1)forn=0to6

The contents of the destination operand are concatenated with the Carry flag and together
they are rotated right one bit position. Bit 0 of the destination operand is moved to the Carry
flag and the Carry flag is moved to bit 7 of the destination.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Setif the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Setif the bit rotated from bit 0 was a 1; cleared otherwise
Addressing Execute
Mode Syntax Instruction Format Time Note
R: RRR 11001011 00011-r- 2
IR: RR (HL) 11001011 00011110 2+1
X: RR (XY+d) 11y11101 11001011 ——d— 00011110 4+r1 |

Field Encodings: r: per convention
y: Ofor X, 1 for Y

5-151

N 2SILa5

USER'S MANUAL

Operation:

Flags:

Addressing
Mode

RRA

tmp
A7)
C

A(n)

RRA

ROTATE RIGHT (ACCUMULATOR)

« A

« C

« A(0)

« tmp(n+1)forn=0to 6

The contents of the accumulator are concatenated with the Carry flag and together they are
rotated right one bit position. Bit 0 of the accumulator is moved to the Carry flag and the Carry
flag is moved to bit 7 of the accumulator.

S: Unaffected

Z: Unaffected

H: Cleared

P: Unaffected

N: Cleared

C: Setif the bit rotated from bit O was a 1; cleared otherwise
Execute

Syntax Instruction Format Time

RRA 00011111 2

Note

5-153

; 2380
@ ZIL.GE USER'S MANUAL

RRCW
ROTATE RIGHT CIRCULAR (WORD)

RRCW dst dst=R, RX, IR, X

Operation: tmp & dst
C « dst(0)
dst(15) « tmp(0)
dst(n) <« tmp(n+1)forn=0to 14

The contents of the destination operand are rotated right one bit position. Bit O of the
destination operand is moved to the most significant bit position and also replaces the Carry

flag.
Flags: S Set if the most significant bit of the result is set; cleared otherwise
z Set if the result is zero; cleared otherwise
H: Cleared
P: Setif parity of the result is even; cleared otherwise
N: Cleared
C Set if the bit rotated from bit O was a 1; cleared otherwise
Addressing Execute
Mode Syntax Instruction Format Time Note
R: RRCW R 11101101 11001011 000010rr 2
RX: RRCW RX 11101101 11001011 0000110y 2
IR: RRCW (HL) 11101101 11001011 00001010 2+r
X: RRCW (XY+d) 11y11101 11001011 ——d— 00001010 441 I

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: OforIX, 1 for IY

5-155

AN 2iLa5

USER'S MANUAL

Operation:

Flags:

Addressing
Mode

RRD

ROTATE RIGHT DIGIT

RRD

tmp(3-0) « A(3-0)
A(3-0) « dst(3-0)
dst(3-0) « dst(7-4)

dst(7-4) «~ tmp(3-0)

The low digit of the accumuiator is logically concatenated to the destination byte whose
memory address is in the HL register. The resulting three-digit quantity is rotated to the right
by one BCD digit (four bits). The upper digit of the source is moved to the lower digit of the
source; the lower digit of the source is moved to the lower digit of the accumulator, and the
lower digit of the accumulator is moved to the upper digit of the source. The upper digit of
the accumulator is unaffected. In multiple-digit BCD arithmetic, this instruction can be used
to shift to the right a string of BCD digits, thus dividing it by a power of ten. The accumulator
serves to transfer digits between successive bytes of the string. This is analogous to the use
of the Carry flag in multiple-precision shifting using the RR instruction.

S: Set if the accumulator is negative after the operation; cleared otherwise
Z: Setif the accumulator is zero after the operation; cleared otherwise
H: Cleared
P: Set if the parity of the accumulator is even after the operation; cleared otherwise
N: Cleared
C: Unaffected
Execute
Syntax Instruction Format Time Note
RRD 11101101 01100111 3+r

5-157

N 2iLa5

USER'S MANUAL

SBC

SUBTRACT WITH CARRY (BYTE)

SBC A,src src =R, RX, IM, IR, X
Operation: A « A-src-C
The source operand together with the Carry flag is subtracted from the accumulator and the

difference is stored in the accumulator. The contents of the source are unaffected. Two's
complement subtraction is performed.

Flags: S: Setif the result is negative; cleared otherwise
Z: Setif the result is zero; cleared otherwise
H: Setif there is a borrow from bit 4 of the result; cleared otherwise
V: Setif arithmetic overflow occurs, that is, if the operands are of different signs and the
result is of the same sign as the source; cleared otherwise
N: Set
C: Setif there is a borrow from the most significant bit of the result; cleared otherwise
Addressing Execute
Mode Syntax Instruction Format Time Note
R: SBC AR 10011-r- 2
RX: SBC A,RX 11y11101 1001110w 2
IM: SBC An 11011110 —n— 2
IR: SBC A,(HL) 10011110 2+r1
X: SBC A,(XY+d) 11y11101 10011110 —d— 4+r1 |

Field Encodings: r: per convention
y: OforIX, 1 for IY
w: O for high byte, 1 for low byte

5-159

. 2340
@ lem USER'S MANUAL

SBCwW
SUBTRACT WITH CARRY (WORD)

SBCW [HL,]src src = R, RX, IM, X
Operation: HL(15-0) « HL(15-0) - src(15-0) - C
The source operand together with the Carry flag is subtracted from the HL register and the

difference is stored in the HL register. The contents of the source are unaffected. Two's
complement subtraction is performed.

Flags: S: Setif the result is negative; cleared otherwise
Z: Setif the result is zero; cleared otherwise
H: Set if there is a borrow from bit 12 of the result; cleared otherwise
V: Setif arithmetic overflow occurs, that is, if the operands are of different signs and the
result is of the same sign as the source; cleared otherwise
N: Set
C: Setif there is a borrow from the most significant bit of the result; cleared otherwise
Addressing Execute
Mode Syntax Instruction Format Time Note
R: SBCW [HL,]R 11101101 10011 1rr 2
RX: SBCW [HL,]RX 11y11101 10011111 2
IM: SBCW [HL,]nn 11101101 10011110 -n(low) -n(high)- 2
X: SBCW [HL,](XY+d) 11y11101 11011110 ——d— 4+r |

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: OforIX, 1 for lY

5-161

. 2380™
@ 205 USER'S MANUAL

SET
SET BIT

SET b, dst dst=R, IR, X
Operation: dst(b) « 1
The specified bit b within the destination operand is set to 1. The other bits in the destination

are unaffected. The bit to be set is specified by a 3-bit field in the instruction; this field
contains the binary encoding for the bit number to be set. The bitnumber b must be between

Oand?7.
Flags: S: Unaffected

Z: Unaffected

H: Unaffected

V: Unaffected

N: Unaffected

C: Unaffected
Addressing Execute
Mode Syntax Instruction Format Time Note
R: SET b,R 11001011 11bbb -r- 2
IR: SET b,(HL) 11001011 11bbb110 2+4r
X: SET b,(XY+d) 11y11101 11001011 ——d— 11bbb110 441 |
Field Encodings: r per convention

y: 0 for IX, 1 for IY

5-163

™

. 2380
N 2iLas USER's MANUAL

SLA
SHIFT LEFT ARITHMETIC (BYTE)
SLA dst dst=R, IR, X
Operation: tmp « dst
C « dst(7)
dst(0) « 0
dst(n+1) « tmp(n)forn=0to6

The contents of the destination operand are shifted left one bit position. Bit 7 of the
destination operand is moved to the Carry flag and zero is shifted into bit 0 of the destination.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Setif the result is zero; cleared otherwise
H: Cleared
P: Set if parity of the result is even; cleared otherwise
N: Cleared
C: Setif the bit shifted from bit 7 was a 1; cleared otherwise
Addressing Execute
Mode Syntax Instruction Format Time Note
R: SLAR 11001011 00100-r- 2
IR: SLA (HL) 11001011 00100110 2+4r
X: SLA (XY+d) 11y11101 11001011 ——d— 00100110 4+r |

Field Encodings: r: per convention
y: OforIX, 1 for lY

5-165

™

. Z38
N 2iLais USER'S MANUAL
SLP
SLEEP
SLP
Operation: if (STBY not enabled) then
CPU Halts
else
Z380 enters Standby mode
With Standby mode disabled, this instruction is interpreted and executed as a HALT
instruction.
With Standby mode enabled, executing this instruction causes all device operation to stop,
thus minimizing power dissipation. The /STNBY signal is asserted to indicate this Standby
mode status. /STNBY remains asserted until an interrupt or reset request is accepted, which
causes the device to exit Standby mode. If the option is enabled, an external bus request
also causes the devcie to exit the Standby mode.
Flags: S: Unaffected
Z: Unaffected
H: Unaffected
V: Unaffected
N: Unaffected
C: Unaffected
Addressing Execute
Mode Syntax Instruction Format Time Note
SLP 11101101 01110110 2

5-167

u 2380
@ 2Lan USER'S MANUAL

SRAW
SHIFT RIGHT ARITHMETIC (WORD)

SRAW dst dst=R, RX, IR, X

Operation: tmp « dst
o] « dst(0)
dst(15) « tmp(15)
dst(n) « tmp(n+1)forn=0to 14

The contents of the destination operand are shifted right one bit position. Bit O of the
destination operand is moved to the Carry flag and the most significant bit remains

unchanged.
Flags: S: Setif the result is negative; cleared otherwise
Z: Setif the result is zero; cleared otherwise
H: Cleared
P: Setif parity of the result is even; cleared otherwise
N: Cleared
C: Setif the bit shifted from bit 0 was a 1; cleared otherwise
Addressing Execute
Mode Syntax Instruction Format Time Note
R: SRAW R 11101101 11001011 001010rr 2
RX: SRAW RX 11101101 11001011 0010110y 2
IR: SRAW (HL) 11101101 11001011 00101010 2+r
X: SRAW (XY+d) 11y11101 11001011 ——d— 00101010 441]

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL
y: Ofor IX, 1 for IY

5-169

23
USER'S MANUAL

Operation:

Flags:

Addressing
Mode

R:
RX:
IR:

X:

SRLW
SHIFT RIGHT LOGICAL (WORD)

SRLW dst dst =R, RX, IR, X

tmp « dst

C « dst(0)

dst(15) « 0O

dst(n) « tmp(n+1)forn=0to 14

The contents of the destination operand are shifted right one bit position. Bit O of the
destination operand is moved to the Carry flag and zero is shifted into the most significant
bit of the destination.

S: Cleared
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Setif parity of the result is even; cleared otherwise
N: Cleared
C: Setif the bit shifted from bit 0 was a 1; cleared otherwise
Execute
Syntax Instruction Format Time Note
SRLW R 11101101 11001011 001110rr 2
SRLW RX 11101101 11001011 0011110y 2
SRLW (HL) 11101101 11001011 00111010 2+1

SRLW (XY+d) 11y11101 11001011 ——d— 00111010 4+r |

Field Encodings: rr: 00 for BC, 01 for DE, 11 for HL

y: Ofor IX, 1 for IY

5-171

N 2iLa5

USER'S MANUAL

Operation:

Flags:

Addressing
Mode
DA:

SUB
SUBTRACT (WORD)

SUB HL,src src = DA

if (XM) then begin
HL(31-0) <« HL(31-0) - src(31-0)
end

else begin
HL(15-0) « HL(15-0) - src(15-0)
end

The source operand is subtracted from the HL register and the difference is stored in the
HL register. The contents of the source are unaffected. Two's complement subtraction is
performed. Note that the length of the operand is controlled by the Extended/Native mode
selection, which is consistent with the manipulation of an address by the instruction.

S: Unaffected

Z: Unaffected

H: Setif there is a borrow from bit 12 of the result; cleared otherwise

V: Unaffected

N: Set

C: Setif there is a borrow from the most significant bit of the result; cleared otherwise
Execute

Syntax Instruction Format Time Note

SUB HL,(nn) 11101101 11010110 -n(low)- -n(high) 241 I, X

5-173

- Z380™

N 2iLas USER'S MANUAL
SuUBw
SUBTRACT (WORD)
SUBW [HL,]src src = R, RX, IM, X
Operation: HL(15-0) « HL(15-0) - src(15-0)
The source operand is subtracted from the HL register and the difference is stored in the
HL register. The contents of the source are unaffected. Two's complement subtraction is
performed.
Flags: S: Setif the result is negative; cleared otherwise
Z: Setif the result is zero; cleared otherwise
H: Set if there is a borrow from bit 12 of the result; cleared otherW|se
V: Setif arithmetic overflow occurs, that is, if the operands are of different signs and the
result is of the same sign as the source; cleared otherwise
N: Set
C: Setif there is a borrow from the most significant bit of the result; cleared otherwise
Addressing Execute
Mode Syntax Instruction Format Time Note
R: SUBW [HL,IR 11101101 100101 rr 2
RX: SUBW [HL,]RX 11y11101 10010111 2
IM: SUBW [HL,]Inn 11101101 10010110 -n(low)- n(high)- 2
X: SUBW [HL,J(XY+d) 11y11101 11010110 ——d— 2+r

Field Encodings:

rr: 00 for BC, 01 for DE, 11 for HL
y: OforIX, 1forlY

5-175

. Z380™
N 2iLa5 USER'S MANUAL

TST
TEST (BYTE)

TST src src =R, IM, IR
Operation: A AND src
Alogical AND operationis performed between the corresponding bits of the source operand

and the accumulator. The contents of both the accumulator and the source are unaffected;
only the flags are modified as a result of this instruction.

Flags: S: Setif the most significant bit of the result is set; cleared otherwise
Z: Setif all bits of the result are zero; cleared otherwise
H: Set
P: Set if the parity is even; cleared otherwise
N: Cleared
C: Cleared
Addressing Execute
Mode Syntax Instruction Format Time Note
R: TSTR 11101101 00-r-100 2
IM: TSTn 11101101 01100100 —n— 2
IR: TST (HL) 11101101 00110100 2+r

Field Encodings: r: per convention

5-177

™

. 2380
@ alm USER'S MANUAL

XOR
EXCLUSIVE OR (BYTE)

XOR[Alsrc src=R,RX, IM, IR, X

Operation: A « AXORsrc
A logical EXCLUSIVE OR operation is performed between the corresponding bits of the
source operand and the accumulator and the result is stored in the accumulator. A 1 bitis

stored wherever the corresponding bits in the two operands are different; otherwise a 0 bit
is stored. The contents of the source are unaffected.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Setif all bits of the result are zero; cleared otherwise
H: Cleared
P: Setif the parity is even; cleared otherwise
N: Cleared
C: Cleared
Addressing Execute
Mode Syntax Instruction Format Time Note
R: XOR [A]R 10101-r- 2
RX: XOR [A]RX 11y11101 1010110w 2
IM: XOR [A]n 11101110 —n— 2
IR: XOR [AJ(HL) 10101110 2+r1
X: XOR [AJ(XY+d) 11y11101 10101110 —d— 441 |

Field Encodings: r: per convention
y: OforIX, 1 forlY
w: O for high byte, 1 for low byte

5-179

Bewn

Interrupts and Traps n

N 2L

USER's MANUAL

GHAPTER 6
INTERRUPTS AND TRAPS

6.1 INTRODUCTION

Exceptions are conditions that can alter the normal flow of
program execution. The Z380™ CPU supports three kinds
of exceptions; interrupts, traps, and resets.

Interrupts are asynchronous events generated by a device
external to the CPU; peripheral devices use interrupts to
request service from the CPU. Traps are synchronous
events generated internally in the CPU by a particular
condition that can occur during the attempted execution of
an instruction—in particular, when executing undefined
instructions. Thus, the difference between Traps and Inter-
rupts is their origin. A Trap condition is always reproduc-
ible by re-executing the program that created the Trap,
whereas an Interrupt is generally independent of the
currently executing task.

A hardware reset overrides all other conditions, including
Interrupts and Traps. It occurs when the /RESET line is
activated and causes certain CPU control registers to be
initialized. Resets are discussed in detail in Chapter 7.

The Z380 MPU'’s Interrupt and Trap structure provides
compatibility with the existing Z80 and Z180 MPU'’s with
the following exception—the undefined opcode Trap oc-
currence is with respect to the Z380 instruction set, and its
response is improved (vs the Z180) to make Trap handling
easier. The Z380 MPU also offers additional features to
enhance flexibility in system design.

6.2 INTERRUPTS

Of the five external Interrupt inputs provided, one is as-
signed as a Nonmaskable Interrupt, /NMI. The remaining
inputs, /INT3-/INTO, are four asynchronous maskable In-
terrupt requests.

The Nonmaskable Interrupt; (NMI) is an Interrupt that
cannot be disabled (masked) by software. Typically NMlis
reserved for high priority external events that need imme-
diate attention, such as animminent power failure. Maskable
Interrupts are Interrupts that can be disabled (masked)
through software by cleaning the appropriate bits in the
Interrupt Enable Register (IER) and IEF1 bit in the Select
Register (SR).

All of these four maskable Interrupt inputs (/INT3-/INTO)
are external input signals to the Z380 CPU core. The four
Interrupt enable bits in the Interrupt Enable Register deter-
mine (IER; Internal /O address: 17H) which of the re-
quested Interrupts are accepted. Each Interrupt input has
a fixed priority, with /INTO as the highest and /INT3 as the
lowest.

The Enable Interrupt (El) instruction is used to selectively
enable the maskable Interrupts (by setting the appropriate
bits in the IER register and IEF1 bit in the SR register) and

the Disable Interrupt instruction is used to selectively
disable interrupts (by clearing appropriate bits in the IER,
and/or clearing |EF1 bit in the SR register). When an
Interrupt source has been disabled, the CPU ignores any
request from that source. Because maskable Interrupt
requests are not retained by the CPU, the request signalon
a maskable Interrupt line must be asserted until the CPU
acknowledges the request.

When enabling Interrupts with the El instruction, all
maskable Interrupts are automatically disabled (whether
previously enabled or not) for the duration of the execution
of the El instruction and the instruction immediately follow-

ing.

Interrupts are always accepted between instructions. The
block move, block search, and block I/O instructions can
be interrupted after any iteration.

The Z380 CPU has four selectable modes for handling
externally generated Interrupts, using the IM instruction.
The first three modes extend the Z80 CPU Interrupt Modes
to accommodate the Z380 CPU’s additional Interrupt in-
puts in a compatible fashion. The fourth mode allows more
flexibility in interrupt handling.

6-1

N 2iLas

™

USER'S MANUAL

6.2.2.1 [EF1, IEF2

|IEF1 controls the overall enabling and disabling of all on-
chip peripheral and external maskable Interrupt requests.
If IEF1 is at logic O, all such Interrupts are disabled. The
purpose of IEF2 is to correctly manage the occurrence of
/NMI. When /NMI is acknowledged, the state of IEF1 is
copied to IEF2 and then IEF1 is cleared to logic 0. At the

end of the /NMI interrupt service routine, execution of the
Return From Nonmaskable Interrupt instruction, RETN,
automatically copies the state of IEF2 back to IEF1. This is
a means to restore the Interrupt enable condition existing
before the occurrence of /NMI. Table 6-3 summarizes the
states of IEF1 and |IEF2 resulting from various operations.

Table 6-3. Operation Effects on IEF1 and IEF2

Operation IEF1 IEF2 Comments

/RESET 0 0 Inhibits all interrupts except Trap and /NMI.

Trap 0 0 Disables interrupt nesting.

/NMI 0 IEF1 |IEF1 value copied to IEF2, then IEF1 is cleared.

RETN IEF2 NC Returns from /NMI service routine.

/INT3-/INTO 0 0 Disables interrupt nesting.

RETI NC NC Returns from Interrupt service routine, Z80 1/O device.

RET NC NC Returns from service routine, or returns from Interrupt service routine for a
non-Z80 1/0 device.

El 1 1

DI 0 0

LD A/lor LDR|I NC NC IEF2 value is copied to P/V Flag.

LDHLlorLDHLR NC NC

(NC = No Change)

6.2.2.2 |, | Extend
The 8-bit Interrupt Register and the 16-bit Interrupt Regis-
ter Extension are cleared during reset.

6.2.2.3 Interrupt Enable Register
D7-D4 Reserved Read as 0, should write to as 0.
D3-D0 IE3-IEO (Interrupt Request Enable Flags)

These flags individually indicate if /INT3, /INT2, /INT1, or
/INTOisenabled. Note thatthese flags are conditioned with
the Enable and Disable Interrupt instructions (with argu-
ments) (See Figure 6.1).

IER: 00000017H
Read Only

0
. | IESI IE2 l IE1 | IEO—I

T

0 0 o 1 Reset Value

Encoded Interrupt
Requests

Interrupt Requests
Enable

Figure 6-1. Interrupt Enable Register

6.2.2.4 Assigned Vectors Base Register

D7-D1 AB15-AB9 (Assigned Vectors Base). The Interrupt
Register Extension, |z, together with AB15-AB9, define the
base address of the assigned Interrupt vectors table in
memory space (See Figure 6-2).

DO Reserved. Read as 0, should write to as O.

AVBR: 00000018H
RW

7 0

|AB15|AB14|AB13|AB12|AB11 |AB10_| ABQI - l
0 0 0 0 0 0 0 0

Reset Value

Reserved
Program as 0
Readas 0

Assigned Vectors
Base

Figure 6-2. Assigned Vectors Base Register

6-3

N 235

™

USER'S MANUAL

6.4 NONMASKABLE INTERRUPT

The Nonmaskable Interrupt Input /NMI is edge sensitive,
with the Z380 MPU internally latching the occurrence of its
falling edge. When the latched version of /NMI is recog-
nized, the following operations are performed.

1. Thelnterrupted PC (Program Counter) value is pushed
onto the stack. The size of the PC value pushed onto
the stack depends on Native (one word) or Extended
mode (two words) in effect.

2. The state of IEF1 is copied to IEF2, then IEF1 is
cleared.

3. The Z380 MPU commences to fetch and execute
instructions from address 00000066H.

6.5 INTERRUPT RESPONSE FOR MASKABLE INTERRUPT ON /INTO

The transactions caused by the Maskable Interrupt on
/INTO are different depends on the Interrupt Mode in effect
at the time when the interrupt has been accepted, as
described below.

6.5.1 interrupt Mode 0 Response for
Maskable Interrupt /INTO

This mode is similar to the 8080 CPU Interrupt response
mode. During the Interrupt acknowledge transaction, the
external 1/O device being acknowledged is expected to
outputavector onto the upper portion of the data bus, D15-
D8. The Z380 MPU interprets the vector as an instruction
opcode. |[EF1 and IEF2 are reset to logic 0, disabling all
further maskable interrupt requests. Note that unlike the
other interrupt responses, the PC is not automatically
pushed onto the stack. Typically, a Restart instruction
(RST) is used, since the Restart opcode is only one byte
long, meaning that the interrupting peripheral needs to
supply only one byte of information. For this case, it pushes
the interrupted PC (Program Counter) value onto the stack
and resumes execution at a fixed memory location. Alter-
natively, a 3-byte call to any location can be executed.

Note that a Trap occurs if an undefined opcode is supplied
by the I/O device as a vector.

6.5.2 Interrupt Mode 1 Response for
Maskable Interrupt /INTO

In Interrupt Mode 1, the Z380 CPU automatically executes
aRestart to afixed location (00000038H) when an interrupt
occurs. An Interrupt acknowledge transaction is gener-
ated, during which the data bus contents are ignored by
the Z380 MPU. The interrupted PC value is pushed onto the
stack. The size of the PC value pushed onto the stack is
depends on Native (one word) or Extended mode (two
words) in effect. The IEF1 and IEF2 are reset to logic 0 so
as to disable further maskable interrupt requests. Instruc-
tion fetching and execution restarts at memory location
00000038H.

6.5.3 Interrupt Mode 2 Response for
Maskable Interrupt /INTO

Interrupt Mode 2 is a vectored Interrupt response mode,
wherein the interrupting device identifies the starting loca-
tion of service routine using an 8-bit vector read by the CPU
during the Interrupt acknowledge cycle.

During the Interrupt acknowledge transaction, the external
1/0 device being acknowledged is expected to output a
vector onto the upper portion of the data bus, D15-D8. The
interrupted PC value is pushed onto the stack and IEF1
and IEF2 are reset to logic O so as to disable further
maskable interrupt requests. The size of the PC value
pushed onto the stack is depends on Native (one word) or
Extended mode (two words) in effect. The Z380 MPU then
reads an entry from a table residing in memory and loads
itinto the PC to resume execution. The address of the table
entryis composed of the | Extend (1z) contentsas A31-A16,
the | Register contents as A15-A8 and the vector supplied
by the 1/O device as A7-AO. Note that the table entry is
effectively the starting address of the interrupt service
routine designed for the I/O device being acknowledged, }
and the table composing of starting addresses for all the }
Interrupt Mode 2 service routines can be referred to as the &
Interrupt Mode 2 vector table. Each table entry should be
word-sized if the Z380 MPU is in the Native mode and Long
Word-sized if in the Extended mode, in either case even-
aligned (least significant byte with address AO = 0), mean-
ing 128 different vectors can be used in the Native mode,
and 64 different vectors can be used in Extended mode.

6.5.4 Interrupt Mode 3 Response for
Maskable Interrupt /INTO

Interrupt Mode 3 is similar to mode 2 except that a 16-bit
vector is expected to be placed on the data bus D15-D0 by
the 1/O device during the Interrupt acknowledge transac-
tion. The interrupted PC is pushed onto the stack. The size
of the PC value pushed onto the stack depends on the

6-5

N 2iL15

i

“Se s
e,

4

Girsuntaalle

N 2LaB

USER's MANUAL

GHAPTER 7
RESET

7.1 INTRODUCTION

The Z380 CPU is placed in a dormant state when the
/RESET inputis asserted. All its operations are terminated,
including any interrupt, bus request, or bus transaction
that may be in progress. On the Z380 MPU, the IOCLK
goes Low on the next BUSCLK rising edge and enters into
the BUSCLK divided-by-eight mode. The address and
data buses are tri-stated, and the bus control signals are
driven to their inactive states. The effect of /RESET on the
Z380 CPU and related internal I/O registers is depicted in
Table 7-1.

The /RESET input may be asynchronous to BUSCLK,
though itis sampled internally at BUSCLK's falling edges.
For proper initialization of the Z380 CPU, V,,, must be within
operating specifications and the CLK input must be stable
for more than five cycles with /RESET held Low.

The Z380 CPU proceeds to fetch the first instruction 3.5
BUSCLK cycles after /RESET is deasserted, provided
such deassertion meets the proper setup and hold times

with reference to the falling edge of BUSCLK. On the Z380
MPU implementation, with the proper setup and hold times
being met, IOCLK’s first rising edge is 11.5 BUSCLK
cycles after the /RESET deassertion, preceded by a mini-
mum of four BUSCLK cycles when IOCLK is at Low.

Note thatif /BREQis active when /RESET is deasserted, the
Z380 MPU would relinquish the bus instead of fetching its
first instruction. IOCLK synchronization would still take
place as described before.

Requirements to reset the device, and the initial state after
reset might be different depending on the particularimple-
mentation of the Z380 CPU on the individual Superintegra-
tion version of the device. For /RESET effects and require-
ments, refer to the individual product specification.

H :
: : . N
) R : e e i H
N . . X . L ¢ A
" coe R o
Ay > i i
. iy RE
) = : Ay
. . N . §
B 3 . «
. - ‘- T
B ’
H -

. o “

N 2iL05
2380™ BENCHMARKING

This application note compares the performance and program memory requirements among the new 16-bit
CPU from Zilog Z80380 and several competing processors, including the Intel 80186, 80960 and Motorola

68020 and CPU32.

INTRODUCTION

Zilog's new Z380™ Central Processing Unit is a high
performance CPU engine designed to meet today's appli-
cation requirements. The Z380 CPU incorporates ad-
vanced architectural features that allow fast and efficient
throughput and increased memory addressing capability
while maintaining Z80%/Z180® object code compatibility.

The Z380 CPU is an enhanced version of the Z80 CPU. The
Z80 instruction set has been retained, adding a full com-
pliment of 16-bit arithmetic and logical operations, multiply
and divide, acomplete set of register-to-register loads and
exchanges, plus 32-bit load and exchange, and 32-bit
arithmetic operations for address calculations.

The addressing modes of the Z80 have been enhanced
with Stack pointer relative loads and stores, 16-bit and 24-
bit indexed offsets, and more flexible indirect register
addressing. All of the addressing modes allow access to
the entire 32-bit addressing space.

The register set of the Z80 microprocessor is expanded to
32 bits, and has been replicated four times to allow for fast
context switching among tasks in a dedicated control
environment.

The following are the key features of the Z380:

B Full static CMOS design with low power standby mode
support

B 32-bit internal data paths and ALU

B 16-bit (64K) or 32-bit (4G) linear addressing space
16-bit internal data bus

B Two clock cycle minimum instruction execution

B Two clock cycle Memory bus

B Programmable /O bus protocols and clock rates
B Four banks of 32-bit registers

B Enhanced interrupt capabilities, including 16-bit
vectors and four external Interrupt inputs

@ Undefined opcode trap for full Z380 CPU instruction
set

The Z380 block diagram is shown in Figure 1. For a
detailed description of the Z380 please refer to the Z380
Technical Manual, DC #8297-00, and the Z380 Preliminary
Product Specification DC #6003-02 from Zilog.

N 2iLaB

Z380™ BENCHMARKS
APPLICATION NOTE

BENCHMARKS AMONG EMBEDDED PROCESSORS

Inresponse to a recent microprocessor selection process
by a major customer, Zilog's Datacom Marketing group
compared the performance and program memory re-
quirements among the new Z80380 and several compet-

ing processors, including the Intel 80186 and 80960 and
the Motorola 68020 and CPU32. (The CPU32 is the heart
of the Motorola's 803xx series of integrated products.)

METHOD

Benchmarking consisted of selecting four code fragments
judged to be typical of embedded applications, coding
the four fragments in assembly language for each of the
four processors, and calculating the execution time for
each fragment on each processor, at 16, 25, and 40 MHz
clock rates as applicable to each.

The results were then tabulated in a spreadsheet that first
normalized them to the figure for the 25 MHz 80380, and
then averaged the normalized values for memory code
size and execution time, as well as an overall "figure of
merit".

The code fragments were called "l/O Loop", 'Signed Byte
Handling". "Multiply/Accumulate'. and "Interrupt’. Since
the execution time for 1/0 Loop is a function of the number
of times through the loop, and because it was felt to be the
most typical of user requirements, it was counted twice
toward the composite performance and merit figures,
once for a single iteration and once for eight times through
the loop. Finally, a fifth performance category was in-
cluded, the time required for memory-to-memory block
movement of data. This made six performance values that
were averaged with four program-size values for the over-
all Figure of Merit, an imbalance that "felt right" in terms of
the way we think many users view the value of an embed-
ded microprocessor.

ASSUMPTIONS

Because execution time can be a complex matter for
today's pipelined processors, our benchmarks made sev-
eral assumptions that simplified performance evaluation.
The most presumptive was that the memory on all proces-
sors was fast enough that there would be NO WAIT
STATES. (In many cases this would mandate fast Static
RAM rather than larger, more economical Dynamic RAM,
which makes sense for some applications but not others.)

Asecond assumptionwas thatalloperands were ALIGNED
to the natural boundaries for their size: data accessed 16
bits at atime was located at an address that was a multiple
of two bytes, while data to be accessed 32 bits at a time
was located at an address that's a multiple of 4 bytes. This
characteristic can be guaranteed by many high-level-
language compilers, and is questionable only for the
Block Move operations.

For processors that include a cache (the 68020 and
80960), the timing was calculated such that the first ac-
cess to each instruction was a cache miss, and any
subsequent accesses were cache hits. In other words, we
assumed that these code fragments were not part of a
central loop, but were executed in response to specific
events that were sufficiently infrequency that the code was
superseded in the cache between events.

8-3

Z380™ BENCHMARKS

@ 2ila5 APPLICATION NOTE
DESCRIPTION OF THE CODE FRAGMENTS
1/0 Loop depending on the sign of NORM and how it compares to

This code fragment reads received data, two bytes at a
time, from a 16C30 Universal Serial Controller (USC), and
stores the data in a memory buffer for each frame. The
USC is the successor to Zilog's popular SCC, and has a
32-byte FIFO capacity. First, each sequence sets up
whatever registers are needed to access the USC, the
memory buffer, and a current pointer into the buffer named
rxi".

At the start of each loop, the code reads the number of
bytes currently in the receive FIFO, from the MSbyte of a
USC register called RICR. It also reads a 16-bit status
register called RCSR.

IFthere are no bytes leftin the FIFO, the code exits from the
fragment. If there is one byte in the RxFIFO, the code
checks the status to see if the byte is either the last one of
a frame, or is the byte at which a Receive Overrun condi-
tion occurred. If neither of these is the case, the code
leaves the byte in the RxFIFO for the future, and exits from
the fragment. Otherwise, or if there are two or more bytes
in the FIFO, the code:

1. ensures that no interrupt can occur between the
following steps,

2. reads two bytes from the FIFO via the USC register
called RDR
(the USC will only provide one if there's only one in the
FIFO)

3. storesthe datain memory atthe address in the pointer
"

4. increments rxi by 2,

5. stores rxi back in memory, and

6. enables interrupts to occur again.

After these operations the code tests the status obtained
earlier from RCSR, and if the data just stored didn't
representthe end of a frame, it goes back to the start of the
loop described above. The following code calls an end-of-
frame-handling subroutine called"_Handle_RxStatus"_this
part of the fragment counts toward the code memory
required but not toward the execution time, because a
frame ends only once in many executions of the loop.

Signed Byte Handling

This code fragment originally came from a customer code
in the hard disk field. It examines three 8-bit variables in
memory called NORM, Q, and K2. Actually NORM can
range from -256 to +255 and is implemented as a 16-bit
variable. It computes an eight-bit result in any of six ways,

that of Q, as described in the comments at the top of each
page of code.

First the code may access some or all or the three input
variables and/or set up registers to point to one or more of
them. Then it tests the sign of NORM, branching to the
second "half* of the code fragment if it's positive. In each
"half*, the code compares NORM and Q and branches
around in a tree-structured fashion to compute the result
dictated by relative values of NORM and Q.

To evaluate the overall execution time of the fragment, we
computed the execution time for each of the six result
cases, and averaged them.

This may be the least clear code fragment as to its cosmic
purpose, but it is a reasonable example of the kind of
decision-tree processing that's typical of many 1/O han-
dling and control systems.

Multiply/Accumulate

This code fragments is also taken from a customer code in
a hard-disk application. It uses four 16-bit input values in
memory, CURSEC, POSN_ERR, S_GRAT, and K_GRAT,
plus two memory tables of 16-bit values called S_TABLE
and C_TABLE, each as large as the largest possible
values of CURSEC. Fromthese the code extracts S_TABLE
(CURSEC) and saves the result in a memory variable
S_VALUE, and similarly extracts C_TABLE (CUSEC) and
saves it in K_VALUE. The code also multiplies each value
by POSN_ERR, scales/divides eachresultby 64, and adds
the results intomemory variables S_ACCUMand K_ACCUM
respectively, Finally it calculates R_CP=
(S_VALUE*S_GRAT + K_VALUE*KGRAT) /32.

This code includes four 16x16 multiplications and 32-bit
scale/shift operations. For all the processors except the
CPU32, the fragment is coded to loop back once to
minimize memory requirements, by taking advantage of
the similarity of the computations for the "S" and "K" values.

Interrupt

These code fragments service a "receive status” interrupt
from a Zilog 16C30 Universal Serial Controller (USC). The
actual code size and execution time are reduced from a
full-blown ISR, by evaluating for the case of a "Receive
Overrun' event, and by isolating the details of handling an
End of Frame event in a separate subroutine. This is done

8-5

AY= Re

Z380™ BENCHMARKS
APPLICATION NOTE

SUMMARY (Continued)

Of course there's something a little out of line about
including the 80960KA in this comparison, which

* costs far more than any of the other processors,

* entails added system-level expense because of its 32-bit
data path and required memory width (also true of the
68020), and

* requires special "block transfer" memory design tech-
niques

In fact, Intel has another member of its 80960 that is more
like the other processors herein, the 8096KA. This device
hasa 16-bit data bus like the 80380 and 80186, and amore
compact package thatlowers its cost into a more competi-
tive range. Unfortunately we were unable to obtain any
timing information for the 80960SA in the time frame
required for this benchmarking.

However, we did find an Intel brochure that allows the
80960SA to participate in these results in a small way. It
showed a "Dhrystone” (fixed point) figure for the 80960SA
of 12145, compared to 19740 for the 960KA. Multiplying
the performance figures for the 960KA by 19740/12145
(smaller is better in our figures while larger is better for the
Dhrystone) yielded the results shown in the third-last and
last lines. For the last line that combines code size and
execution time into afinal figure of Merit, only the execution
time values were scaled by Intel's Dhrystone results.

To wrap up, considering both code density and execution
time for these code fragments, the new Zilog 80380 blows
away other 16-bit processors including the 80960SA, and
comes out about equal to the much more expensive 32-bit
80960KA if skewed by one speed grade (25 MHz 380 vs.
16 MHz 960, 40 MHz 380 vs. 25 MHz 960).

8-7

QN 2iLaB

Z380™ BENCHMARKS
AppLICATION NOTE

/O LOOP: 680X0

; the following 680x0 code reads data from a USC

; this code is not warranted to be correct nor operative, and is
; intended for performance benchmarking purposes only

; this version assumes that rxi variable is in first 64 Kbytes

Bytes Clks (CPU32)

4 8 MOVE.L rxi,A1

6 10 MOVE.L #uscBase+ICR,A2
RxPoll16U_lIp:

6 11 CMP.B #1,RICR-ICR(A2)

4 7 MOVE.W RCSR-ICR(A2),D0

2 4/10 BHI RxPoll16U_hav

2 4/10 BLO RxPoll16U_end

4 5 AND.B #3$12,D0

2 4/10 BZ RxPoll16U_end
RxPoll16U_hav:

4 9 BCLR #7,(A2)

4 8 MOVE.W RDR-ICR(A2),(A1)+

4 8 MOVE.L Al rxi

4 9 BSET #7,(A2)

4 5 AND.B #$10,D0

2 4/10 BZ RxPoll16U_Ip

2 MOVEQ #$CO0,D0

4 AND.B CCR+1-ICR(A2),D0

2 BNZ RxPoll16U_rsb

4 MOVE.W RCSR-ICR(A2),D0

2 BRA RxPoll116U_call
RxPoll16U_rsb:

4 MOVE.W RDR-ICR(A2),D0
RxPoll16U_call:

4 BCLR #1,D0

2 MOVE.W DO,-(SP)

4 BCLR #7,(A2)

4 JSR _Handle_RxStatus

2 ADDQ #2,SP

4 BSET #7,(A2)

2 BRA RxPoll16U_lp
RxPoll16U_end:

92 50+77*N clocks (CPU32)

56+48*N clocks (68020)

; address in rcv area
; address of ICR in USC

; <> 1 byte in RxFIFO?

; get status

; around if > 1 byte

; nothing to do if < 1 byte

; 1 byte: RxBound or overrun?
; ignore 1 byte if neither

; disable interrupts

; 2 serial bytes to Rx area
; store rx pointer

; re-enable ints

; RxBound?

; loop if not

; RSBs in use?

; around if so
; take status from RCSR if not

; take status from RDR

; disable interrupts
; call the RxBound subroutine

; enable interrupts
; and loop

8-9

RN 2iLa5 e PeLowon hore
1/0 LOOP: 68020
Bytes Source BC CC [1st subs
4 “MOVE.L rxi,A1” 3 6 8 65 45
6 “MOVE.L #uscBase+ICR,A2" 0 5 6 35 2.5
subtotal: start 31
6 “Ip: CMP.B #1,RICR-ICR(A2)" 3 7 10 8 5
4 “MOVE.W RCSR-ISR(A2),00” 3 7 9 7 5
2 BHI hav (taken) 3 6 9 75 45
BHI hav (not taken) 1 4 5 35 2.5
2 BLO end (taken) 3 6 9 75 45
BLOend (not taken) 1 4 5 35 25
4 “AND.B #$12,D0" 0 4 6 4 2
2 BZ end (taken) 3 6 9 75 45
subtotal: exit 24.8
BZend (not taken) 1 4 5 35 25
4 “hav: BCLR #7,(A2)" 7 8 9 85 75
4 “MOVE.W RDR-ICR(A2),(A1)+" 6 8 11 10 7
4 “MOVE.L A" 5 6 9 85 55
4 “BSET #7,(A2)" 7 8 9 85 75
4 “AND.B #$10,00" 0 4 6 4 2
2 BZ Ip (taken) 3 6 9 75 45
subtotal: loop 485
BZ Ip (not taken) 1 4 5 35 25
2 “MOVEQ #$C0,D0"
4 “AND.B CCR+1-ICR(A2),D0"
2 BNZ rsb
4 “MOVE.W RCSR-ISR(A2),D0"
2 BRA call
4 “rsb: MOVE.W RDR-ICR(A2),00"
4 “BCLR #1,D0”
2 “MOVE.W DO,~(SP)”
4 “BCLR #7,(A2)"
4 JSR _Handle_RxStatus
2 “ADDQ #2,SP"
4 “BSET #7,(A2)"
2 BRA Ip
— end:
2 total 56+48N

8-11

Z380™ BENCHMARKS
AppLICATION NOTE

N 2La5
/O LOOP: 80960KA

the following 80960KA code reads data from a Zilog 16C30 USC
this code is not warranted to be correct nor operative, and is

intended for performance benchmarking purposes only

this code assumes the rxi variable is in the first 4K bytes

address in USC
buffer address from variable
get Isbyte of ICR

around if more than 1 byte
nothing to do if no bytes

1 byte: EOF or overrun?

ignore 1 byte if not

clear MIE, disable ints
get 16 bits from USC
store in memory

increment address

save address

set MIE, enable ints

loop if not EOF

get CCR hi byte
#RSB’s in use?

around if so

take status from RCSR if not

take status from RDR if so

hide the overrun bit

clear MIE, disable ints

call the RxBound subroutine
set MIE, enable ints

Bytes

8 Ida uscBase+ICR,r3

4 Id rxi,rd4

4 Idob (r3),r7

4 clrbit 7,r7,r8
RxPoll16U_Ip:

4 Idob RICR+1-ICR(r3),r5 # get hi byte of RICR

4 Idos RCSR-ICR(r3),ré # get status

4 cmpo 1,15

4 bg RxPoll16U_hav

4 bl RxPoll16U_end

4 and 0x12,r6,r7

4 cmpobe 0,r7,RxPoll16U_end
RxPoll16U_hav:

4 stob r8,(r3)

4 Idos RDR-ICR(r3),r9

4 stos r9,(r4)

4 addo 2,14

4 st r4,rxi

4 stob 17,(r3)

4 bbc 4,r6,RxPoll16U_Ip

4 Idob CCR+1-ICR(r3),r9

4 bbs 7,r9,RxPoll16U_rsb

4 bbs 6,r9,RxPoll16U_rsb

4 ldos RCSR-ICR(r3),g0

4 b RxPoll116U_call
RxPoll16U_rsb:

4 |dos RDR-ICR(r3),g0
RxPoll16U_call:

4 clrbit 2,80

4 stob r8,(r3)

4 bal _Handle_RxStatus

4 stob r7,(r3)

4 b RxPoll16U_Ip # and loop

RxPoll16U_end:

120 55 + 24N (see spreadsheet)

. Z380™ BENCHMARKS
N 2jLa5 APPLICATION NOTE

1/0 Loop: 80960KA

] X CF |
D |CF |
EA |D |CF ICF
Aon|EA |ID 'D
DonB EA iX
W |
AonB ! CF
DonB D
X
AonB CF
DonB D
w
AonB CF
DonB D
24 clocks per repeat w X
CF AonB
D |ICF i DonB
EA D |CF | W
Aon |[EA |D CF |
DonB D |CF |
| Aon |X D |
| DonB X i
| X |
9 clocks to get out i F

8-15

. 2380™ BENCHMARKS
@ 2La5 AppLICATION NoTE

SIGNED BYTE HANDLING: 680X0

; the following 680x0 code handles signed bytes.

; there are 3 signed byte variables in memory, Q, K2, and NORM.
; Actually NORM can range from -256 to +255, so we test the
; MSbyte of a 16-bit NORM but use only the LSbyte otherwise.
; The result is as follows

; if NORM < 0 then

; if NORM > -Q then result := NORM

; else if NORM > Q then result := -2*K2-NORM

; else result := Q - K2

; else if NORM <= Q then result := NORM

; else if NORM <= -Q then result := 2*K2-NORM

; else result := K2 - Q

; Routines can leave the result wherever is most convenient.

; this code is not warranted to be correct nor operative, and

; is intended for performance benchmarking purposes only.

; this code assumes that all variables are in the first 64K

; bytes of memory

Bytes Clks (CPU32)
4 7 MOVE.B Q,DO ; get variable
4 7 MOVEW NORM,D1 ; get variable
2 410 BPL.S npos ; around if positive
2 2 NEG.B DO -Q
2 2 CMP.B D1,D0 ; -Q-NORM
2 4/10 BMI.S rnorm ; go if -Q-NORM<0, NORM>-Q
2 2 NEG.B DO ;Q
2 2 CMP.B D1,D0 ; Q-NORM
2 4/10 BMI.S m2k2 ; go if Q-NORM<0, NORM>Q
4 7 SUB.B K2,D0 ;Q-K2
2 10 BRA.S next
4 7m2k2: MOVE.B K2,D0 i K2
2 2 NEG.B DO ; -K2
2 10 BRA.S dmn
2 2morm: MOVE.B D1,D0 ; NORM
2 10 BRA.S next
2 2 npos: CMP.B D1,D0 ; Q-NORM
2 4/10 BPL rnorm ; go if Q-NORM>=0, NORM<=Q
2 2 NEG.B DO ;-
2 2 CMP.B D1,D0 ; -Q-NORM
2 4/10 BPL.S p2k2 ; go if -Q-NORM>=0, NORM<=-Q
4 7 ADD.B K2,D0 (K2-Q
2 10 BRA.S next
4 7p2k2: MOVEB K2,D0 s K2
2 2dmn: ADD.B DO0,D0 ; +- 2K2
2 2 SUB.B D1,D0 ; +- 2K2 - NORM
next:

64 CPU32 68020

48 NORM (pos) 40
44 NORM (neg) 38
55 2*K2-NORM 48
63 -2*K2-NORM 56

55 K2-Q 48
51 Q-K2 46
52.67 average 45.92

8-17

Z380™ BENCHMARKS

@ ZiLGE AppLICATION NOTE
SIGNED BYTE HANDLING: 68020

©
o
o
5]
=
]

Bytes Clks Source

4 6.5 “move.b Q,D0" 3 6 8
4 6.5 “move.w NORM,D1” 3 6 8
2 75 bpl.s npos (taken) 3 6 9
35 bpl.s npos (not taken) 1 4 5
2 2 neg.b DO 0 2 3
2 2 “cmp.b D1,D0" 0 2 3
2 75 bmi.s rnorm (taken) 3 6 9
35 bmi.s rnorm (not taken) 1 4 5
2 2 neg.b DO 0 2 3
2 “cmp.b D1,D0” 0 2 3
2 75 bmi.s m2k2 (taken) 3 6 9
35 bmi.s m2k2 (not taken) 1 4 5
4 75 “sub.b k2,d0” 3 6 9
2 75 bra.s next 3 6 9
4 6.5 “m2k2: move.b K2,d0" 3 6 8
2 2 neg.b DO 0 2 3
2 75 bra.s dmn 3 6 9
2 2 “rnorm: move.b D1,00" 0 2 3
2 75 bra.s next 3 6 9
2 2 “npos: cmp.b D1,00" 0 2 3
2 75 bpl rorm (taken) 3 6 9
35 bp! morm (not taken) 1 4 5
2 2 neg.b DO 0 2 3
2 2 “cmp.b D1,D0" 0 2 3
2 75 bpl.s p2k2 (taken) 3 6 9
35 bpl.s p2k2 (not taken) 1 4 5
4 75 “add.b K2,00 3 6 9
2 7.5 bra.s next 3 6 9
4 6.5 “p2k2: move.b k2,d0" 3 6 8
2 2 “dmn: add.b d0,d0” 0 2 3
2 2 “sub.b d1,d0” 0 2 3
— — next

64 395 NORM (pos)
375 NORM (neg)

48 2*K2-NORM
555 -2*K2-NORM
485 K2-Q

465 QK2

4592 average

Z380™ BENCHMARKS

@ 2|LCE AppLICATION NOTE
SIGNED BYTE HANDLING: 80960KA

the following B0960KA code handles signed bytes.

there are 3 signed byte variables in memory, Q, K2, and NORM.
Actually NORM can range from -256 to +255, so we test the

MSbyte of a 16-bit NORM but use only the LSbyte otherwise.

The result is as follows

if NORM < 0 then

if NORM > -Q then result := NORM

else if NORM > Q then result := -2*K2-NORM
else result .= Q - K2

else if NORM <= Q then result := NORM

else if NORM <= -Q then result := 2*K2-NORM
else result := K2-Q

Routines can leave the result wherever is most convenient.
this code is not warranted to be correct nor operative, and is
intended for performance benchmarking purposes only

| BytesID
8 B Idib Qr4 # get variable
8 C Idis NORM,r3 # get variable
8 D Idib K2,r5 # get variable
4 E subi r4,0,r6 # make -Q
4 F bbc 8,r3,npos # around if NORM non-negative
4 G cmpibgt r3,r6,next # result=NORM if NORM>-Q
4 H cmpibgt r3,r4,m2k2 # go if NORM>Q
4 | subi r5,r4,r3 #result=Q - K2
4 J b next
4 K'm2k2: sub r5,0,r5 #-K2
4 L p2k2: add r5,r5,r5
4 M sub r3,r5,r3
4 N b next
4 O npos: cmpible r3,r4,next # result=NORM if NORM<=Q
4 P cmpible r3,r6,p2k2 # go if NORM<=-Q
4 Q subi r4,r5,r3 #result = K2-Q

76 26 NORM (pos) see attached chart
26 NORM (neg)
36 2*K2-NORM
37 -2*K2-NORM
29 K2-Q
30 Q-K2
30.67 average

8-21

Z380™ BENCHMARKS
APPLICATION NOTE

Signed Byte Handling: 80960KA

X

X

end case Q-K2

L
begin case NORM(pos,

end case NORM(pos)

begin case

2*K2-NORM

o|m

X[X|X|o|m|m|n|X]|X|X|X|O|nmm

X X([X]X

Xix[o[nm|m
il

end case 2°'k2-NORM

X|O|m

begin case

K2-Q

XIX|X|O|m|m™m

|
1
!
!
|

XXX

iend case K2-Q

8-23

Z380™ BENCHMARKS

@ 2iLd5 ApPLICATION NOTE
2 36 IMUL AX,BP ; times VALUE

1 3 INC BX

1 3 INC BX

3 3=150 CMP BL,K_VALUE MOD 256

2 4/13 JNE kdone ; around if K group done

2 2 MOV CX,DX ; save MS16 of product

2 2 MOV DI,AX ; save LS16 of product

4 9 MOV AX,C_TABLE[SI] ; get K_VALUE from table

2 14=27 JMP Ip ; go back and do K group

2 3 kdone: ADD AX,DI ; add S_VALUE*S_GRAT to K...
2 3 ADC DX,CX

3 10 SHR AX,5

3 8 SHL DX,3

2 3 OR AH,DL ; divide by 32

3 9=36 MOV WORD PTR R_CP,AX

72

404 (24+150+4+27+150+13+36)

8-25

Z380™ BENCHMARKS

N 2015 APPLICATION NOTE
MULTIPLY/ACCUMULATE: CPU32

Bytes Clks Source Hop Top Cop Heal Teal Ceal
4 7 “MOVE.W CURSEC,D0" 0 0 2 1 3 5
6 10 “MOVE.W S_TABLE(DO.W*2),D1" 0 0 2 2 2 8
4 5 “LEA S_VALUE,AQ" 0 0 2 1 1 3
2 5 "MOVE.W D1,(A0)+" 1 1 5 0 0 0
2 2 “MOVE.W D1,D2" 0 0 2 0 0 0
4 31 “MULS.W POSN_ERR,D1" 0 0 26 1 3 5
2 6 “ASR.L #6,D1" 4 0 6 0 0 0
2 7 “ADD.W D1,(A0)+" 0 3 5 1 1 3
2 29 "MULS.W (A0)+,D2" 0 0 26 1 1 3
6 10 “MOVEW C_TABLE(DO.W*2),D1" 0 0 2 2 2 8
2 5 “MOVE.W D1,(A0)+" 1 1 5 0 0 0
2 2 “MOVE.L D1,D0” 0 0 2 0 0 .0
4 31 “MULS.W POSN_ERR,D1" 0 0 26 1 3 5
2 6 “ASR.L #6,D1" 4 0 6 0 0 0
2 7 “ADD.W D1,(A0)+" 0 3 5 1 1 3
2 29 “MULS.W (A0)+,D0" 0 0 26 1 1 3
2 2 “ADD.L D2,D0” 0 0 2 0 0 0
2 6 “ASR.L #5,D0" 4 0 6 0 0 0
2 4 “MOVE.W DO,(A0)+" 1 1 5 0 0 0

o
N

204

8-27

\ Z380™ BENCHMARKS

I @ ZiLCIE APPLICATION NOTE

\‘ MULTIPLY/ACCUMULATE: 80380
\

; this 80380 code performs a 16-bit multiply/accumulate:

; several 16-bit variables pre-exist in memory, including

; CURSEC, POSN_ERR, S_GRAT, and K_GRAT. In addition,
; two tables S_TABLE and C_TABLE are of a size equal to

; the possible range of values of CURSEC. 16-bit results

; of this calculation in memory include S_VALUE, K_VALUE,
; R_CP, and two accumulators S_LACCUM and K_ACCUM:

: S_VALUE := S_TABLE(CURSEC)
: K_VALUE := C_TABLE(CURSEC)

: S_ACCUM := S_ACCUM + ((S_VALUE*POSN_ERR)/64)
: K_ACCUM := K_ACCUM + ((K_VALUE*POSN_ERR)/64)
: R_CP := (S_VALUE*S_GRAT + K_VALUE*K_GRAT) / 32

; to optimize memory accessing, all routines may assume

; that variables S_VALUE, S_GRAT, S_ACCUM, K_VALUE, K_GRAT,
; K_ACCUM are consecutive in memory in whatever order is

; optimal for their instruction set, while CURSEC. POSN_ERR,

; S_TABLE, and C_TABLE are at unrelated locations. R_CP

; can be in either place.

; the order in this version in S_VALUE, S_ACCUM, S_GRAT, K_VALUE,
‘ ; K_LACCUM, K_GRAT, R_CP.

; this code is not warranted to be correct nor operative, and is
; intended for performance benchmarking purposes only
; this code assumes that the global LW and XM bits are cleared.

|
‘ Bytes Clks

4 6 LD IX,(CURSEC)
| 2 2 ADD IX,1X
! 2 2 DDIR IB
(5 8 LD HL,(IX+S_TABLE) ; get S_VALUE from table
2 2 DDIR B)
5 8 LD IY,(IX+C_TABLE) ; get K_VALUE from table
‘ 3 2=35 LD DE,S_VALUE ; start pointer into variables
2 3lp: LD (DE),HL ; save VALUE in memory
2 2 LD IX,HL ; save inreg
| 4 6 LD BC,(POSN_ERR)
3 10 MULTW HL,BC ; VALUE * POSN_ERR (16x16=32)
‘ 2 2 DDR LW
1 2 ADD HL,HL
2 2 DDIR Lw
1 2 ADD HL,HL
1 2 LD AH
2 2 SWAP HL
1 2 LD H,L
1 2 LD LA ; 16 bit product/64
1 2 INC DE
1 2 INC DE
2 6 LD BC,(DE) ; get accum
1 2 ADD HL,BC ; add
2 3 LD (DE),HL ; save accum

8-29

N 2iLa5

Z380™ BENCHMARKS

AppLICATION NOTE

MULTIPLY/ACCUMULATE: 80960KA

this 80960 code performs a 16-bit multiply/accumulate:

several 16-bit variables pre-exist in memory, including

CURSEC, POSN_ERR, S_GRAT, and K_GRAT. In addition,
two tables S_TABLE and C_TABLE are of a size equal to
the possible range of values of CURSEC. 16-bit results

of this calculation in memory include S_VALUE, K_VALUE,
R_CP, and two accumulators S_ACCUM and K_ACCUM:

I 3

S_VALUE := S_TABLE(CURSEC)
K_VALUE := C_TABLE(CURSEC)
S_ACCUM := S_ACCUM + ((S_VALUE*POSN_ERR)/64)
K_ACCUM := K_ACCUM + ((K_VALUE*POSN_ERR)/64)
R_CP := (S_VALUE*S_GRAT + K_VALUE*K_GRAT) / 32

I 3k 3k A

to optimize memory accessing, all routines may assume

that variables S_VALUE, S_GRAT, S_ACCUM, K_VALUE, K_GRAT,
K_ACCUM are consecutive in memory in whatever order is

optimal for their instruction set, while CURSEC. POSN_ERR,

S_TABLE, and C_TABLE are at unrelated locations. R_CP

can be in either place.

the order in this version is S_VALUE, S_ACCUM, S_GRAT,
K_VALUE, K_ACCUM, K_GRAT, R_CP.

this code is not warranted to be correct nor operative, and is
intended for performance benchmarking purposes only

Bytes ID

8 B Idos CURSEC,r8 # get variables

8 o] Idis POSN_ERR,r4

8 D Idis S_TABLE[r3*2],r5 # get S_VALUE from table
8 E Ida S_VALUE,r6 # start pointer into variables
4 F mov r6,r12 # copy that

4 G Ip: muli r4,r5,r7 #S_VALUE*POSN_ERR

4 H stis r5,0(r6) # save S_VALUE

4 | Idis 2(r6),r8 # get accum

4 J Idis 4(r6),r9 # get S_GRAT

4 K shri 6,r7,r7 # divide by 64

4 L addi r7,r8,r8 # accumulate

4 M muli r5,r9,r9 #S_VALUE*S_GRAT

4 N stis r8,2(r6) # save accum

4 0 cmpibne r6,r12,kdone

4 P addi 6,r6

8 Q Idis C_TABLE[r3*2],r5 # get K_VALUE from table
4 R mov r9,r13

4 S b Ip

4 T kdone: addi r13,r9,r9 #S_VALUE*S_GRAT + K_VALUE*K_GRAT
4 U shri 5,r9,r9 # divide by 32

4 \ stis r9,6(r6) # save in R_CP

104 92 (see chart)

8-31

Z380™ BENCHMARKS

AppLICATION NOTE

Multiply/Accumulate: 80360KA

X[XXX XXX [X| X[X[X] > X

CF

Aon

Don

XX X|X|X|O|O

XX X[<] X< X[<] X<t X< [3| X[<[] X

X|X|X|O|m

AonB

DonB

8-33

Z380™ BENCHMARKS

@ 2LdL APPLICATION NOTE
INTERRUPT: 680X0

; This 680x0 code handles Rx Status interrupts from a 16C30.

; It is evaluated for an overrun condition, so that End Of

; Frame processing, which is handled by a separate subroutine,
; doesn't count toward the totals.

; It is not warranted to be correct nor operative, and is

; intended for performance benchmarking purposes only

; It assumes the USC is in a 24-bit addressed memory space
; and that the hardware includes byte/word addressing
; hardware (i.e., an environment like the IUSC/AT Starter Kit)

Bytes Clks (CPU32)

32 interrupt (per CPU32 ref man p.8-27)

rxStint:

; save registers
4 73 MOVEM.L A0-6/D0-7,-(SP) ; could save less, but we don't

; begin handling the interrupt know what procEOF does...
6 7 LEA uscBase,AO
6 10 MOVE.B #clIrlP+RS_IP,DCCR(AQ) ; Clear IP
4 7 MOVE.W RCSR(A0),DO; get status
4 4 BTST #rxOv,DO ; test overflow
2 4 BEQ noOver ; around if not

; handle Rx overrun
6 10 MOVE.B #EnterHuntMode,RCSR+1(AQ) ; force Rx into Hunt
6 12 OR.B #PurgeRx,CCAR+1(A0) ; issue purge Rx command

; handle RxBound (end of frame)
4 4 BTST #rxBnd,DO
2 10 BZ noEOF ; around if no End of Frame
4 BSR procEOF ; call subr if so

; clear interrupt hardware
4 5 noEOF: AND.B #$F6,D0 ; mask status
4 6 MOVE.B DO,RCSR(AO0) ; unlatch status bits we saw
4 7 MOVE.B RICR(A0),DO ; save arm bits
4 6 CLR.B RICR(AQ) ; disarm all
4 6 MOVE.B DO,RICR(AQ) ;rearm
6 10 MOVE.B #cIrlUS+RS_IUS,DCCR+1(A0)

; restore regs, dismiss interrupt and return
4 74 MOVEM.L (SP)+,A0-6/D0-7
2 26 RTE
80 313 clocks (CPU32)

288 clocks (68020)

8-35

Z380™ BENCHMARKS

@ ZiLﬂE AppLICATION NOTE

INTERRUPT: 80380

; This 380 code handles Rx Status interrupts from a 16C30.

; It is evaluated for an overrun condition, so that End Of

; Frame processing, which is handled by a separate subroutine,
; doesn't count toward the totals.

; It is not warranted to be correct nor operative, and is

; intended for performance benchmarking purposes only

; It assumes the USC is in a 24-bit addressed memory space
; and that the hardware includes byte/word addressing
; hardware (i.e., an environment like the IUSC/AT Starter Kit)

Bytes Clks

AOAhWLWWOWN W W NN BDOTN wWw NN

Rl vrown

18 (interrupt time)

rxStint:

; save registers

2 DDIR LW

6 PUSH SR ; save old control settings
4 LDCTL SR,intBank ; one reg bank dedicated

; for unnested interrupts
; begin handling the interrupt

2 DDIR 1B

4 LD IX,uscBase ; set 24-bit address of USC
6 LD (IX+DCCR),clrlP+RS_IP ; clear IP bit

7 LD BC,(IX+RCSR) ; get status

2 BIT rxOv,C

2/6 JR Z,noOver ; around if no overflow flag
; handle Rx overrun

6 LD (IX+RCSR+1),EnterHuntMode ; force Rx hunt mode
7 LD A,(IX+CCAR+1)

2 OR A,PurgeRx

6 LD (IX+CCAR+1),A; issue purge Rx command

; handle RxBound (End of Frame)
2/6 noOver:BIT rxBd,C

2 CALL NZ,proceEOF ; call End of Frame procedure
; clear interrupt hardware

2 AND C,0F6H

6 LD (IX+RCSR),C ; unlatch status bits we saw

7 LD A,(IX+RICR) ; get |A bits

6 LD (IX+RICR),0 ; drop IA bits

6 LD (IX+RICR),A ; rearm them

6 LD (IX+DCCR+1),cIrlUS+RS_IUS ; clear IUS

; restore registers, dismiss interrupt and return

2 DDIR LW
8 POP SR
8 RETI

133

8-37

Z380™ BENCHMARKS
APPLICATION NOTE

S
N
d

Interrupt: 80960KA

w X
X

~
-

N

d

|
b

3|3
go'ﬂm-n

3

x| xjofm

g°m
g°r

AonB
DonB

&3
H

®
-

AonB
DonB
X AonB
DonB

xgo'ﬂ'ﬂﬂ

L
o™
=

AonB
DonB

AonB
DonB

B8|8|2(8(8|L|8[8|2(8|B|2(2 S| R[N B|R

..
8
P 3 P B B B B

104/ from int record

105 I O I
‘ 106 [T 1T 1 |

107 [restore process controis from mt record
108 [1 1
109 [T 1

copy ption record

-
e
s

118 dealloc stack frame, remove mterrupt record

|
1221 ! |switch back to former stack
123 | [T 1]

213153 |a @ || =]=|>|=|2|=|=] o[o[>|>[>

| 8-39

. Z380™ BENCHMARKS
@ 2"—@ APPLICATION NOTE
Summary of Benchmarks
Normalized to 25MHz 80380
Proc 180186 CPU32| CPU32| 68020 68020 2380 Z380 Z380|80960KA | 80960KA
clock rate, MHz 16 16 25 16 25 16 25 40 16 25
clk period, nS 62.5 62.5 40 62.5 40 62.5 40 25 62.5 40
/O Loop (bytes) 61 92 92 92 92 65 65 65 120 120
Bytes, 2380=1 0.94 1.42 1.42 1.42 1.42 1.00 1.00 1.00 1.85 1.85
1/O Loop (formula) 60+80*N |50+77*N |50+77*N |56+48N |56+48N |41+53"N |41+53°N |41+53*N |56+24"N |56+24*N
/0 Loop (clks @ N=1) 140 127 127 104 104 94 94 94 80 80
/0 Loop (nS @ N=1) 8750 7938 5080 6500 4160 5875 3760 2350 5000 3200
nS, N=1, 25MHz Z380=1 2.33 2.11 1.35 1.73 1.11 1.56 1.00 0.63 1.33 0.85
1/0 Loop (clks @ N=8) 700 666 666 440 440 465 465 465 248 248
/0 Loop (nS @ N=8) 43750| 41625| 26640| 27500/ 17600/ 29063] 18600/ 11625/ 15500 9920
nS, N=8, 25MHz Z380=1 2.35 2.24 1.43 1.48 0.95 1.56 1.00 0.63 0.83 0.53
signed bytes (bytes) 63 64 64 64 64 52 52 52 76 76
bytes, 2380=1 1.21 1.23 1.23 1.23 1.23 1.00 1.00 1.00 1.46 1.46
signed bytes (clks) 79 53 53 46 46 43 43 43 31 31
signed bytes (nS) 4917 3292 2107 2875 1840 2667 1707 1067 1917 1227
nS, 25MHz Z2380=1 2.88 1.93 1.23 1.68 1.08 1.56 1.00 0.63 1.12 0.72
multiply/accum (bytes) 72 54 54 54 54 95 95 95 104 104
bytes (Z380=1) 0.76 0.57 0.57 0.57 0.57 1.00 1.00 1.00 1.09 1.09
multiply/accum (clks) 404 204 204 212 212 254 254 254 92 92
multiply/accum (nS) 25250| 12750 8160{ 13250 8480 15875{ 10160 6350 5750 3680
nS, 25MHz Z380=1 249 1.25 0.80 1.30 0.83 1.56 1.00 0.63 0.57 0.36
interrupt (bytes) 63 80 80 80 80 66 66 66 92 92
|bytes (Z380=1) 0.95 1.21 1.21 1.21 1.21 1.00 1.00 1.00 1.39 1.39
interrupt (clks) 328 313 313 288 288 133 133 133 123 123
interrupt (nS) 20500| 19563| 12520| 18000/ 11520 8313 5320 3325 7688 4920
nS, 25MHz Z380=1 3.85 3.68 2.35 3.38 217 1.56 1.00 0.63 1.45 0.92
Block move, clks/byte 4.00 4.25 4.25 2.875 2.875 2.75 2.75 2.75 1.25 1.25
Block move, nS/byte 250 266 170 180 115 172 110 69 78 50
nS, 25MHz Z2380=1 227 241 1.55 1.63 1.05 1.56 1.00 0.63 0.71 0.45
Bytes, ave of 2380=1 0.97 1.1 1.11 1.11 1.11 1.00 1.00 1.00 1.45 1.45
nS, ave of 25 MHz Z2380=1 2.70 227 1.45 1.87 1.20 1.56 1.00 0.63 1.00 0.64
est for 80960SA* 1.63 1.04
ave of al 25MHz Z380=1 2.00 1.81 1.31 1.56 1.16 1.34 1.00 0.78 1.18 0.96
est for 80960SA” 1.56 1.20
* 80960SA times estimated per intel's Dhrystone figures: 19740 for KA, 12145 for SA

8-41

naia

i

A
Ful

4l

¢
W

1%

[

sfi
i

Bt

1

T 1

i

Ty
Roliey

(S ey
!);; ;

A
L

Z380™ Questions & Answers n

N 2iLa5

USER's MANUAL

2380™

QUESTIONS AND ANSWERS

GENERAL OVERVIEW

20

: Whatis currently assigned as the value in the Chip ID

version register?

: Currently the value O0H is assigned to the Z380 MPU,

and other values are reserved. Note that the internal
1/0 address for this register is OFFH.

Can data be accessed in the memory space beyond
the 64K boundary in Native mode?

Yes. The Z380 in Native/Word mode behaves exactly
like the Z80, but has access to the entire 4 Gbytes of
memory for data and 4G locations of I/O space be-
cause the upper 16 bits of all CPU registers (except
the PC) are still accessable to the software using new
Z380 instructions. Note that the program must reside
within the first 64K of memory because the upper word
of the PC is not accessable in Native mode and is
always all zeros in this mode.

Z380is binary code compatible with which processor?
The Z80 and Z180. Please note that the Z380 is not
binary code compatible with the Z280.

What are the two modes that Z380 can operate in?
The Z380 can operate in Native mode or Extended
mode. In Native mode all of the address manipulations
operate on 16-bit quantities whereas in Extended
mode all of the address manipulations operate on 32-
bit quantities.

: What are the specifics of the Z380 PC in Extended

mode?

In extended mode the PC increments across all 32 bits
since the entire 4G Byte of addressing capability is in
use.

Q: How would one determine during a memory read,
whether or not the cycle is instruction fetch or data?

A: There is a Fetch signal available in the PGA version
that goes active during an instruction fetch.

Q: What are the Interrupt acknowledge and /O transac-
tions timings relative to?

A: Allof the Interrupt Acknowledge and I/O transactions
are in reference to the I/O clock which is a program
controlled divided-down version of the BUSCLK.

Q: How can the Z380 return from Extended to Native
mode of operation?

A: Hardware Resetis the ONLY way that one can go back
to Native mode.

Q: Is the Z380 an Intel based architecture or Motorola
based?

“A: The Z380, being compatible with the original Z80, is

Intel based. Intel based means the memory organiza-
tion is the “LSbyte first followed by MSbytes” whereas
the Motorola architecture has “MSbyte first followed by
LSbytes”.

9-1

A

2L

™

USER'S MANUAL

RESET

Q:
A:

b

z9Q

>0

What is the effect of the reset on the Z3807?
Reset will cause the address and data lines to float. All
of the control lines will go to the inactive state.

What is the status of the memory chip select signals
during Reset?

They are all tri-stated, since the Address bus is tri-
stated.

Will reset affect all of the registers on 23807

Not all of the registers are effected by Reset. CPU
registers are not affected by Reset. Please refer to
Product spec DC#6003-02 page 102 for the effect of
Reset on Z380 CPU and related I/O registers.

How long do one need to have the /RESET line active
for proper operation?

The /RESET line must be kept Low for a minimum of 10
BUSCLK cycles. The /RESET signal does not need to
be synchronized to BUSCLK.

When is the /RESET signal be internally by the CPU?
The /RESET input signal may be asynchronous to
BUSCLK, though it is sampled internally by the falling
edge of BUSCLK. For proper initialization of the MPU
Vo Mustbe within operating specification and BUSCLK
must be stable for more than 10 cycles with /RESET
held low.

Doesthe/RESET inputinclude a Schmitt-trigger buffer?

: Yes. The /RESET input on Z380 includes a Schmitt-

trigger buffer to facilitate power-on reset generation
through a simple RC network.

: How are the devices external to the Z380 MPU that are

clocked by IOCLK affected by /RESET pulse width?

A: This depends on the specific device, but in general

they will require a /RESET pulse width that spans
several IOCLK cycles for proper initialization.

: How many BUSCLK cycles after the deassertion of

/RESET will the Z380 proceed to fetch the first instruc-
tion?

: Thefirstmemory read, for an instruction fetch, will start

3.5 BUSCLK cycles after the deassertion of /RESET,
providing that the proper setup and hold times are met
with respect to the BUSCLK falling edge.

: When is the first IOCLK rising edge after deassertion

of /RESET signal?

A: The first rising edge of IOCLK occurs 11.5 BUSCLK

cycles after the deassertion of /RESET, providing that
the proper setup and hold times are met with respect
to the BUSCLK falling edge. This first rising edge on
IOCLK is proceeded by a minimum of 4 BUSCLK
cycles where IOCLK is Low.

: What happens if the /BREQ signal is active when

/RESET is deasserted?

: Inthis case the Z380 will relinquish the bus instead of

fetching the first instruction, but the IOCLK synchroni-
zation will still take place as it normally does.

A

2L

USER'S MANUAL

POWER DOWN MODE

Q:
A:

What are the status of the output drivers when the CPU
is in power down situation?

When the Z380 is without the power the output drivers
appear to be in a high impedance state.

How many ways are available to exit the Standby
mode?

One can exit standby mode by: /BREQ, /RESET, /NMI,
or /INTO-3. Note that /BREQ can be disabled as a
Standby mode exit condition with a bit in the Standby
Mode Control Register (SMCR) at internal I/O address
00000016H. Also, /INTO-3 will only cause an exit from
the Standby mode if interrupts were globally enabled
(with the IEF1 flag) when the Standby mode was
entered.

20

How could a user select the warm-up time appropriate
for the crystal being used?
The WM2-WMO bits in the Standby Mode Control
Register (SMCR) at internal 1/O address 00000016H
control the warm-up time for the crystal oscillator when
exiting the Standby mode.

If the Standby mode option is not enabled, how does
the Z380 interpret the SLP (Sleep) instruction?

In this case the SLP instruction is interpreted and
executed identically to the HALT instruction, stopping
the Z380 from further instruction execution.

Inthe above case whatwould happen to/HALT signal?
In this case the /HALT signal goes to active (Low) to
indicate that the Z380 is in the Halt state.

A

2iLa

USER'S MANUAL

INTERRUPT SECTION

Q:

»Q

What is the state of the IEF1 and IEF2 flags after
execution of the DI (Disable Interrupt) instruction for
the Z3807

Both IEF1 and IEF2 are set to zero by the Dlinstruction.

: What are the specifics of /INTO Mode 3 for the Z3807?

Mode 3 is similar to Mode 2 (as in the Z180 or Z80)
except that a 16-bit interrupt vector is expected from
the peripherals.

How can the user take advantage of INTO mode 3 with
8-bit I/O devices?

All of the upper 8 bits of the data bus need to be pulled
either High or Low with external resistors.

How many clocks are required for the Interrupt se-
quence in Interrupt mode 2 on the Z3807

With no wait states and a 1X |/O bus, the time from
/INTO assertion to the start of first service routine
instruction fetch (Interrupt Mode 2) is 18 clocks.

: Is there a problem with interrupt vectors in Extended

mode?

: In Extended mode the Interrupt Vector in Interrupt

Mode 2 has the two least significant bits both “0". This
can cause a problem when connecting to Z80/Z8500
peripherals if the vector includes status from those
devices. This is because most of these devices modify
the vector starting with the bit just after the least-
significant bit. Thus in certain cases this bit may be
returned as a “1” from the interrupting device.

: How would the user access the Iz register (the Inter-

rupt Register Extension)?

: The LD IHL and LD HL,! instructions (in Long Word

mode) will transfer 32 bits to or from the | register.

i Ty

M [EINS

21

- Wl
L

.Aj :

s

1
H

N 2iLa5

USER's MANUAL

APPENDIX A
7380 GPU INSTRUCTION FORMATS

Four formats are used to generate the machine language
bit encoding for the Z380 CPU instructions. Also, the Z380
CPU has eight Decoder Directives which work as a special
escape sequence to the certain instructions, to expand its
capability as explained in Chapter 3.

The bit encoding of the Z380 CPU instructions are parti-
tioned into bytes. Every instructions encoding contains
one byte dedicated to specifying the type of operation to
be performed; this byte is referred to as the instruction’s
operation code, or opcode. Besides specifying a particu-
lar operation, opcode typically include bit encoding speci-
fying the operand addressing mode for the instruction and
identifying any general purpose registers used by the
instruction. Along with the opcode, instruction encoding
may include bytes that contain an address, displacement,
and/or immediate value used by the instruction, and spe-
cial bytes called “escape codes” that determine the mean-
ing of the opcode itself.

By themselves, one byte opcode would allow the encoding
of only 256 unique instructions. Therefore, special “es-
cape codes” that precede the opcode in the instruction
encoding are used to expand the number of possible
instructions. There are two types of escape codes; ad-
dressing mode and opcode. Escape codes for the Z80
original instructions are one bytes in length, and the
escape codes used to expand the Z380 instructions are
one or two bytes in length.

These instruction formats are differentiated by the opcode
escape value used. Format 1 is for instructions without an
opcode escape byte(s), Format 2 is for instructions with an
opcode escape byte. Format 3 is for instructions whose
opcode escape byte has the value OCBH, and Format 4 is
for instructions whose escape bytes are OED, followed by
0CBH.

For the opcode escape byte, the Z380 CPU uses ODDH
and OFDH as well, which on the Z80 CPU, these are used
only as an address escape byte.

In Format 2 and 4, the opcode escape byte immediately
precedes the opcode byte itself.

In Format 3, a 1-byte displacement may be between the
opcode escape byte and opcode itself. Opcode escape
bytes are used to distinguish between two different in-
structions with the same opcode bytes, thereby allowing
more than 256 unique instructions. For example, the 01H
opcode, when alone, specifies a form of a Load Register
Word instruction; when proceeded by 0CBH escape code,
the opcode 0O1H specifies a Rotate Left Circular instruc-
tion.

Format 3 instructions with DDIR Immediate data Decoder
Directives, 1 to 3 bytes of displacement is between the
opcode escape byte and opcode itself.

Format 4 instructions are proceeded by OEDH, 0CBH, and
a opcode. Optionally, with immediate word field follows.

Addressing mode escape codes are used to determine
the type of encoding for the addressing mode field within
an instruction’s opcode, and can be used in instructions
with and without opcode escape value. An addressing
mode escape byte can have the value of 0ODDH or OFDH.
The addressing mode escape byte, if present, is always
the first byte of the instruction's machine code, and is
immediately followed by either the opcode (Format 1), or
the opcode escape byte (Format 2 and 3). For example,
the 46H opcode, when alone, specifies a Load B register
from memory location pointed by (HL) register; when
proceeded by the ODDH escape byte, the opcode 46H
specifies a Load B register from the memory location
pointed by (IX+d).

LS

2

i

3 o sid

il

N 2iLas

USER'S MANUAL

APPENDIX B

Z380™ INSTRUCTIONS IN
ALPHABETIC ORDER

This Appendix contains a quick reference guide when
programming.

It has the Z380 instructions sorted by alphabetic order.
The column “Mode” indicates whether the instruction is

affected by DDIRimmediate Decoder Directives, Extended
mode or Native mode of operation, and Word or Long Word

mode of operation; “I" means the instruction can be used
with DDIR IM to expand its immediate constant, “X" means
that the operation of the instruction is affected by the XM
status bit, and “L" means that the instruction is affected by
LW status bit, or can be used with DDIR LW or DDIRW. The
Native/Extended modes, Word/Long Word modes and
Decoder Directives are discussed in Chapter 3 in this
manual.

B-1

N 2iLaB

USER'S MANUAL

Source Code Mode Object Code Source Code Mode Object Code
AND IYu FD A4 BIT 3D CB 5A

AND L A5 BIT 3,E CB 5B
ANDW (IX+12H) | DD E6 12 BIT 3,H CB 5C
ANDW (IY+12H) | FD E6 12 BIT 3L CB 5D
ANDW 1234H ED A6 34 12 BIT 4,(HL) CB 66

ANDW BC ED A4 BIT 4,(IX+12H) | DD CB 12 66
ANDW DE ED A5 BIT 4,(1Y+12H) | FD CB 12 66
ANDW HL ED A7 BIT 4,A CB 67

ANDW HL,(IX+12H) | DD E6 12 BIT 4,B CB 60

ANDW HL,(IY+12H) | FD E6 12 BIT 4,C CcB 61

ANDW HL,1234H ED A6 34 12 BIT 4D CB 62

ANDW HL,BC ED A4 BIT 4E CB 63

ANDW HL,DE ED A5 BIT 4,H CB 64

ANDW HL,HL ED A7 BIT 4,L CB 65

ANDW HL,IX DD A7 BIT 5,(HL) CB 6E

ANDW HL,IY FD A7 BIT 5,(IX+12H) I DD CB 12 6E
ANDW X DD A7 BIT 5,(IY+12H) | FD CB 12 6E
ANDW 1Y FD A7 BIT 5A CB 6F

BIT 0,(HL) CB 46 BIT 5,B CB 68

BIT 0,(IX+12H) | DD CB 12 46 BIT 5,C CB 69

BIT o,(ly+12H) | FD CB 12 46 BIT 5D CB 6A

BIT 0A CB 47 BIT 5E CB 6B

BIT 0,B CB 40 BIT 5H CB 6C

BIT 0,C cB 4 BIT 5L CB 6D

BIT 0,D CB 42 BIT 6,(HL) CB 76

BIT 0,E CB 43 BIT 6,(IX+12H) | DD CB 12 76
BIT OH CB 44 BIT 6,(IY+12H) | FD CB 12 76
BIT oL CB 45 BIT 6,A cB 77

BIT 1,(HL) CB 4E BIT 6,B CB 70

BIT 1,(IX+12H) | DD CB 12 4E BIT 6,C cB 71

BIT 1,(IY+12H) | FD CB 12 4E BIT 6,D cB 72

BIT 1A CB 4F BIT 6,E cCB 73

BIT 1,B CB 48 BIT 6,H cB 74

BIT 1,C CB 49 BIT 6,L CB 75

BIT 1,D CB 4A BIT 7,(HL) CB 7E

BIT 1,E CB 4B BIT 7,(IX+12H) | DD CB 12 7E
BIT 1,H CB 4C BIT 7,(IY+12H) | FD CB 12 7E
BIT 1,L CB 4D BIT 7,A cB 7F

BIT 2,(HL) CB 56 BIT 7,B cB 78

BIT 2,(IX+12H) | DD CB 12 56 BIT 7,C CB 79

BIT 2,(Iy+12H) | FD CB 12 56 BIT 7D CB 7A

BIT 2,A cB 57 BIT 7,E CB 7B

BIT 2B CB 50 BIT 7H CB 7C

BIT 2,C CcB 51 BIT 7L CB 7D

BIT 2D cB 52 BTEST ED CF

BIT 2,E CB 53 CALL 1234H | X CD 34 12
BIT 2H CB 54 CALL C,1234H I X DC 34 12
BIT 2L CB 55 CALL M,1234H I X FC 34 12
BIT 3,(HL) CB 5E CALL NC,1234H I X D4 34 12
BIT 3,(IX+12H) | DD CB 12 5E CALL NZ,1234H I X C4 34 12
BIT 3(ly+12H) | FD CB 12 5E CALL P,1234H I X F4 34 12
BIT 3A CB b5F CALL PE,1234H I X EC 34 12
BIT 3B CB 58 CALL V, 1234H I X EC 34 12
BIT 3C cB 59 CALL PO,1234H I X E4 34 12

B-3

N 2LaB

2380™
USER'S MANUAL

Source Code Mode Object Code Source Code Mode Object Code
DEC Y X FD 2B EX BC,BC’ L ED CB 30
DEC YL FD 2D EX BC,DE L ED 05
DEC YU FD 25 EX BC,HL L ED OD
DEC L 2D EX BC,IX L ED 03
DEC SP X 3B EX BC,IY L ED 0B
DECW BC X 0B EX cc CB 31
DECW DE X 1B EX D,D’ CB 32
DECW HL X 2B EX DE,DE’ L ED CB 31
DECW IX X DD 2B EX DE,HL L EB
DECW 1Y X FD 2B EX DE,IX L ED 13
DECW SP X 3B EX DE,lY L ED 1B
DI 1FH DD F3 1F EX EE CB 33
DI F3 EX HH CB 34
DIVUW (IX+12H) DD CB 12 BA EX HL,HL L ED CB 33
DIVUW (IY+12H) FD CB 12 BA EX HL,IX L ED 33
DIVUW 1234H ED CB BF EX HL,IY L ED 3B
DIVUW BC ED CB B8 EX IX,IX’ ED CB 34
DIVUW DE ED CB B9 EX IX,1Y L ED 2B
DIVUW HL ED CB BB EX Iy, 1y’ L ED CB 35
DIVUW HL,(IX+12H) | DD CB 12 BA EX LL CB 35
DIVUW HL,(IY+12H) | FD CB 12 BA EXALL ED D9
DIVUW HL,1234H ED CB BF EXTS A L ED 65
DIVUW HL,BC ED CB B8 EXTS L ED 65
DIVUW HL,DE ED CB B9 EXTSW HL ED 75
DIVUW HL,HL ED CB BB EXTSW ED 75
DIVUW HL,IX ED CB BC EXX D9
DIVUW HL,IY ED CB BD EXXX DD D9
DIVUW IX ED CB BC EXXY FD D9
DIVUW 1Y ED CB BD HALT 76
DJNZ 123456H X FD 10 56 34 12 M 0 ED 46
DJINZ 1234H X DD 10 34 12 M 1 ED 56
DJNZ 12H X 10 12 IM 2 ED 5E
El 1FH DD FB 1F M 3 ED 4E
El FB IN A,(12H) DB 12
escape CB IN A,(C) ED 78
escape DD IN B,(C) ED 40
escape ED IN C,(C) ED 48
escape FD IN D,(C) ED 50
escape ED CB IN E.(C) ED 58
escape DD CB IN H,(C) ED 60
escape FD CB IN L.(C) ED 68
EX (SP),HL L E3 INO (12H) ED 30 12
EX (SP),IX L DD E3 INO A(12H) ED 38 12
EX (SP),IY L FD ES INO B,(12H) ED 00 12
EX A(HL) ED 37 INO C,(12H) ED 08 12
EX AA ED 3F INO D,(12H) ED 10 12
EX AA CcB 37 INO E,(12H) ED 18 12
EX AB ED 07 INO H,(12H) ED 20 12
EX AC ED OF INO L,(12H) ED 28 12
EX AD ED 17 INA A(1234H) | ED DB 34 12
EX AE ED 1F INAW HL,(1234H) | FD DB 34 12
EX AH ED 27 INC (HL) 34
EX AL ED 2F INC (IX+12H) | DD 34 12
EX AF,AF' 08 INC (IY+12H) | FD 34 12
EX B,B’ CB 30 INC A 3C

B-5

. 238
N 2LAa5 USER's MANUAL

Source Code Mode Object Code Source Code Mode Object Code
LD (IX+12H),IY | L DDCB 12 2B LD BC,(1234H) | L ED 4B 34 12
LD (IX+12H),L | DD 75 12 LD BC,(BC) L DD oC
LD (IY+12H),34H | FD 36 34 12 LD BC,(DE) L DD 0D
LD (IY+12H),A | FD 77 12 LD BC,(HL) L DD OF
LD (IY+12H),B | FD 70 12 LD BC,(IX+12H) | L DD CB 12 03
LD (ly+12H),BC | L FD CB 12 OB LD BC,(lY+12H) | L FD CB 12 03
LD (ly+12H),C | FD 71 12 LD BC,(SP+12H) | L DD CB 12 0f
LD (IY+12H),D | FD 72 12 LD BC,1234H I L 01 34 12
LD (IY+12H),DE | FD CB 12 1B LD BC,BC L ED 02
LD (lY+12H),E | L FD 73 12 LD BC,DE L DD 02
LD (IY+12H)H | FD 74 12 LD BCHL L FD 02
LD (IY+12H),HL | L FD CB 12 3B LD BC,IX L DD 0B
LD (IY+12H),IX | L FD CB 12 2B LD BC,IlY L FD 0B
LD (IY+12H),L | FD 75 12 LD C,(HL) 4E
LD (SP+12H),BC | L DD CB 12 09 LD C,(IX+12H) | DD 4E 12
LD (SP+12H),DE | L DD CB 12 19 LD C(lY+12H) | FD 4E 12
LD (SP+12H)HL | L DD CB 12 39 LD C,12H 0E 12
LD (SP+12H),IX | L DD CB 12 29 LD CA 4F
LD (SP+12H),lY | L FD CB 12 29 LD CB 48
LD A,(1234H) | 3A 34 12 LD CcC 49
LD A(BC) 0A LD CD 4A
LD A,(DE) 1A LD C,E 4B
LD A,(HL) 7E LD CH 4C
LD A/(IX+12H) | DD 7E 12 LD C,IXL DD 4D
LD A,(lY+12H) | FD 7E 12 LD C,IXU DD 4C
LD A/12H 3E 12 LD C,IYL FD 4D
LD AA 7F LD C,yuU FD 4C
LD AB 78 LD CL 4D
LD AC 79 LD D,(HL) 56
LD AD 7A LD D,(IX+12H) | DD 56 12
LD AE 7B LD DJ(lY+12H) | FD 56 12
LD AH 7C LD D,12H 16 12
LD Al ED 57 LD DA 57
LD A|IXL DD 7D LD D,B 50
LD A,IXU DD 7C LD D,C 51
LD AYL FD 7D LD DD 52
LD AlYU FD 7C LD D,E 53
LD AL 7D LD DH 54
LD AR ED 5F LD D,IXL DD 55
LD B,(HL) 46 LD D,IXU DD 54
LD B,(IX+12H) | DD 46 12 LD D,IYL FD 55
LD B,(IY+12H) | FD 46 12 LD D,IYU FD 54
LD B,12H 06 12 LD DL 55
LD B,A 47 LD DE,(1234H) | L ED 5B 34 12
LD BB 40 LD DE,BC) L DD 1C
LD B.C 41 LD DE,(DE) L DD 1D
LD BD 42 LD DE,(HL) L DD 1F
LD B,E 43 LD DE,(IX+12H) | L DDCB 12 13
LD BH 44 LD DE,(IY+12H) | L FD CB 12 13
LD B,IXL DD 45 LD DE,(SP+12H) | L DD CB 12 11
LD B,IXU DD 44 LD DE,1234H | L 11 34 12
LD B,IYL FD 45 LD DEBC L ED 12
LD B,IYU FD 44 LD DE,DE L DD 12
LD B.L 45 LD DEHL L FD 12
B-7

N 2iLaB

™

USER'S MANUAL

Source Code Mode Object Code Source Code Mode Object Code
LD LH 6C MULTW (IX+12H) | DD CB 12 92
LD L,L 6D MULTW (IY+12H) | FD CB 12 92
LD R.A ED 4F MULTW 1234H ED CB 97 34 12
LD SP,(1234H) | L ED 7B 34 12 MULTW BC ED CB 90

LD SP,1234H | L 31 34 12 MULTW DE ED CB 91

LD SP,HL L F9 MULTW HL ED CB 93

LD SP,IX L DD F9 MULTW HL,(IX+12H) | DD CB 12 92
LD SP,IY L FD F9 MULTW HL,(IY+12H) | FD CB 12 92
LDCTL ADSR ED DO MULTW HL,1234H ED CB 97 34 12
LDCTL AXSR DD DO MULTW HL,BC ED CB 90
LDCTL AYSR FD DO MULTW HL,DE ED CB 91
LDCTL DSR,01H ED DA 01 MULTW HLHL ED CB 93
LDCTL DSRA ED D8 MULTW HL,IX ED CB 94
LDCTL HL,SR L ED CO MULTW HL,IY ED CB 95
LDCTL SR,01H DD CA 01 MULTW X ED CB 94
LDCTL SRA DD C8 MULTW 1Y ED CB 95
LDCTL SRHL L ED C8 NEG A ED 44

LDCTL XSR,01H DD DA 01 NEG ED 44

LDCTL XSRA DD D8 NEGW HL ED 54

LDCTL YSR,01H FD DA 01 NEGW ED 54

LDCTL YSRA FD D8 NOP 00

LDD ED A8 OR (HL) B6

LDDR ED B8 OR (IX+12H) | DD B6 12
LDDRW L ED F8 OR (IY+12H) | FD B6 12
LDDW L ED E8 OR 12H F6 12

LDI ED AO OR A B7

LDIR ED BO OR A,(HL) B6

LDIRW L ED FO OR A (IX+12H) | DD B6 12
LDIW L ED EO OR A(IY+12H) | FD B6 12
LDW (BC),1234H | L ED 06 34 12 OR A12H F6 12

LDW (DE),1234H | L ED 16 34 12 OR AA B7

LDW (HL),1234H | L ED 36 34 12 OR AB BO

LDW HL,I L DD 57 OR AC B1

LDW I HL L DD 47 OR AD B2

MLT BC ED 4C OR AE B3

MLT DE ED 5C OR AH B4

MLT HL ED 6C OR A IXL DD BS5

MLT SP ED 7C OR A,IXU DD B4

MTEST DD CF OR AIYL FD B5
MULTUW (IX+12H) | DD CB 12 9A OR AlYU FD B4
MULTUW (IY+12H) | FD CB 12 9A OR AL B5

MULTUW 1234H ED CB 9F OR B BO

MULTUW BC ED CB 98 OR] B1

MULTUW DE ED CB 99 OR D B2

MULTUW HL ED CB 9B OR E B3

MULTUW HL,(IX+12H) | DD CB 12 9A OR H B4

MULTUW HL,(IY+12H) 1 FD CB 12 9A OR IXL DD B5
MULTUW HL,1234H ED CB 9F OR IXU DD B4
MULTUW HL,BC ED CB 98 OR IYL FD B5
MULTUW HL,DE ED CB 99 OR IYu FD B4
MULTUW HL,HL ED CB 9B OR L B5

MULTUW HL,IX ED CB 9C ORW (IX+12H) | DD F6 12
MULTUW HL,IY ED CB 9D ORW (Iy+12H) | FD F6 12
MULTUW IX ED CB 9C ORW 1234H ED B6 34 12
MULTUW Y ED CB 9D ORW BC ED B4

B-9

N 2iLa15

2380

USER'S MANUAL

Source Code Mode Object Code Source Code Object Code
RES 4E CB A3 RL A CB 17
RES 4H CB A4 RL B CB 10
RES 4L CB A5 RL Cc CB 11
RES 5,(HL) CB AE RL D CB 12
RES 5,(IX+12H) | DD CB 12 AE RL E CB 13
RES 5,(IY+12H) | FD CB 12 AE RL H CB 14
RES 5A CB AF RL L CB 15
RES 5B CB A8 RLA 17
RES 5,C CB A9 RLC (HL) CB 06
RES 5D CB AA RLC (IX+12H) DD CB 12 06
RES 5E CB AB RLC (IY+12H) FD CB 12 06
RES 5H CB AC RLC A CB 07
RES 5L CB AD RLC B CB 00
RES 6,(HL) CB B6 RLC C CB ot
RES 6,(IX+12H) | DD CB 12 B6 RLC D CB 02
RES 6,(IY+12H) | FD CB 12 B6 RLC E CB 03
RES 6A CB B7 RLC H CB 04
RES 6B CB BO RLC L CB 05
RES 6.C CB Bt RLCA 07
RES 6D CB B2 RLCW (HL) ED CB 02
RES 6,E CB B3 RLCW (IX+12H) DD CB 12 02
RES 6H CB B4 RLCW (IY+12H) FD CB 12 02
RES 6L CB B5 RLCW BC ED CB 00
RES 7,(HL) CB BE RLCW DE ED CB Of
RES 7,(IX+12H) | DD CB 12 BE RLCW HL ED CB 03
RES 7,(lY+12H) | FD CB 12 BE RLCW IX ED CB 04
RES 7.A CB BF RLCW IY ED CB 05
RES 7B CB B8 RLD ED 6F
RES 7.C CB B9 RLW (HL) ED CB 12
RES 7D CB BA RLW (IX+12H) DD CB 12 12
RES 7,E CB BB RLW (IY+12H) FD CB 12 12
RES 7H CB BC RLW BC ED CB 10
RES 7L CB BD RLW DE ED CB 11
RESC LCK ED FF RLW HL ED CB 13
RESC LW DD FF RLW IX ED CB 14
reserved ED 55 RLW IY ED CB 15
RET C X D8 RR (HL) CB 1E
RET M X F8 RR (IX+12H) DD CB 12 1E
RET NC X DO RR (IY+12H) FD CB 12 1E
RET NS X FO RR A CB 1F
RET NV X EO RR B CB 18
RET NZ X Co RR Cc CcB 19
RET P X FO RR D CB 1A
RET PE X E8 RR E CB 1B
RET PO X EO RR H CB 1C
RET S X F8 RR L CB 1D
RET V X E8 RRA 1F
RET Z X C8 RRC (HL) CB OE
RET X C9 RRC (IX+12H) DD CB 12 OE
RETI X ED 4D RRC (IY+12H) FD CB 12 OE
RETN X ED 45 RRC A CB OF
RL (HL) CB 16 RRC B CB 08
RL (IX+12H) | DD CB 12 16 RRC C CB 09
RL (Iy+12H) | FD CB 12 16 RRC D CB 0A

RRC E CB 0B

B-11

AN 2iLa5

USER'S MANUAL
Source Code Mode Object Code Source Code Mode Object Code
SET 4B CB EO SLAW HL ED CB 23
SET 4,C CB Ef SLAW IX ED CB 24
SET 4D CB E2 SLAW 1Y ED CB 25
SET 4E CB E3 SLP ED 76
SET 4H CB E4 SRA (HL) CB 2E
SET 4L CB E5 SRA (IX+12H) | DD CB 12 2E
SET 5,(HL) CB EE SRA (IY+12H) | FD CB 12 2E
SET 5,(IX+12H) | DD CB 12 EE SRA A CB 2F
SET 5,(lY+12H) | FD CB 12 EE SRA B CB 28
SET 5A CB EF SRA C CB 29
SET 5B CB E8 SRA D CB 2A
SET 5C CB E9 SRA E CB 2B
SET 5D CB EA SRA H CB 2C
SET 5 CB EB SRA L CB 2D
SET 5H CB EC SRAW (HL) ED CB 2A
SET 5L CB ED SRAW (IX+12H) | DD CB 12 2A
SET 6,(HL) CB F6 SRAW (Iy+12H) | FD CB 12 2A
SET 6,(IX+12H) | DD CB 12 F6 SRAW BC ED CB 28
SET 6,(IY+12H) | FD CB 12 F6 SRAW DE ED CB 29
SET 6,A CB F7 SRAW HL ED CB 2B
SET 6B CB FO SRAW X ED CB 2C
SET 6,C CB F1 SRAW Y ED CB 2D
SET 6,D CB F2 SRL (HL) CB 3E
SET 6,E CB F3 SRL (IX+12H) | DD CB 12 3E
SET 6H CB F4 SRL (IY+12H) | FD CB 12 3E
SET 6L CB F5 SRL A CB 3F
SET 7,(HL) CB FE SRL B CB 38
SET 7,(IX+12H) | DD CB 12 FE SRL C CB 39
SET 7,(IY+12H) | FD CB 12 FE SRL D CB 3A
SET 7A CB FF SRL E CB 3B
SET 7B CB F8 SRL H CB 3C
SET 7.C CB F9 SRL L CB 3D
SET 7D CB FA SRLW (HL) ED CB 3A
SET 7.E CB FB SRLW (IX+12H) | DD CB 12 3A
SET 7H CB FC SRLW (IY+12H) | FD CB 12 3A
SET 7L CB FD SRLW BC ED CB 38
SETC LCK ED F7 SRLW DE ED CB 39
SETC LW DD F7 SRLW HL ED CB 3B
SETC XM FD F7 SRLW X ED CB 3C
SLA (HL) CB 26 SRLW IY ED CB 3D
SLA (IX+12H) | DD CB 12 26 SUB A/(HL) 96
SLA (lY+12H) | FD CB 12 26 SUB A12H D6 12
SLA A CB 27 SUB AA 97
SLA B CB 20 SUB A(IX+12H) | DD 96 12
SLA C CB 21 SUB A(lY+12H) | FD 96 12
SLA D CB 22 SUB 12H D6 12
SLA E CB 23 SUB AB 90
SLA H CB 24 SUB AC 91
SLA L CB 25 SUB AD 92
SLAW (HL) ED CB 22 SUB AE 93
SLAW (IX+12H) | DD CB 12 22 SUuB AH 94
SLAW (lY+12H) | FD CB 12 22 SUB AIXL DD 95
SLAW BC ED CB 20 SUB AIXU DD 94
SLAW DE ED CB 21 SUB AlYL FD 95

Come s Prerene

N 205

USER'S MANUAL

APPENDIX G
Z380" INSTRUCTION IN NUMERIC ORDER

The following Appendix has the Z380 instructions sorted
by numeric order.

The column “Mode” indicates whether the instruction is
affected by DDIRimmediate Decoder Directives, Extended
mode or Native mode of operation, and Word or Long Word
Mode of operation; “I” means the instruction can be used
with DDIR IM to expand its immediate constant, “X" means

that the operation of the instruction is affected by the XM
status bit, and “L" means that the instruction is affected by
LW status bit, or can be used with DDIR LW or DDIRW. The
Native/Extended modes, Word/Long Word modes and
Decoder Directives are discussed in Chapter 3 in this
manual.

AN 2iLaB

USER'S MANUAL

Object Code Source Code Mode Object Code Source Code Mode
63 LD HE 99 SBC AC
64 LD HH 9A SBC AD
65 LD H,L 9B SBC AE
66 LD H,(HL) 9C SBC AH
67 LD HA 9D SBC AL
68 LD LB 9E SBC A/(HL)
69 LD LC 9F SBC AA
6A LD L,D A0 AND AB
6B LD LE A0 AND B
6C LD LH Al AND AC
6D LD LL Al AND C
6E LD L,(HL) A2 AND AD
6F LD LA A2 AND D
70 LD (HL),B A3 AND AE
71 LD (HL).C A3 AND E
72 LD (HL),D A4 AND AH
73 LD (HL),E A4 AND H
74 LD (HL),H A5 AND AL
75 LD (HL),L A5 AND L

76 HALT A6 AND (HL)
77 LD (HL),A A6 AND A,(HL)
78 LD AB A7 AND A
79 LD AC A7 AND AA
7A LD AD A8 XOR AB
7B LD AE A8 XOR B
7C LD AH A9 XOR AC
7D LD AL A9 XOR C
7E LD A,(HL) AA XOR AD
7F LD AA AA XOR D
80 ADD AB AB XOR AE
81 ADD AC AB XOR E
82 ADD AD AC XOR AH
83 ADD AE AC XOR H
84 ADD AH AD XOR AL
85 ADD AL AD XOR L

86 ADD A(HL) AE XOR (HL)
87 ADD AA AE XOR A,(HL)
88 ADC AB AF XOR A
89 ADC AC AF XOR AA
8A ADC AD BO OR AB
8B ADC AE BO OR B
8C ADC AH B1 OR AC
8D ADC AL B1 OR Cc
8E ADC A(HL) B2 OR AD
8F ADC AA B2 OR D
90 SUB AB B3 OR AE
91 SuB AC B3 OR E
92 SuB AD B4 OR AH
93 SUB AE B4 OR H
94 suB AH B5 OR AL
95 SUB AL B5 OR L
96 SuB A(HL) B6 OR (HL)
97 SUB AA B6 OR A,(HL)
98 SBC AB B7 OR A

" Z ™
RN 2iLa5 Ust's MANUAL
Object Code Source Code Mode Object Code Source Code Mode
CB 51 BIT 2,C CB 87 RES 0A
CB 52 BIT 2,D CB 88 RES 1B
CB 53 BIT 2,E CB 89 RES 1,C
CB 54 BIT 2H CB 8A RES 1D
CB 55 BIT 2,L CB 8B RES 1,E
CB 56 BIT 2,(HL) CB 8C RES 1H
CB 57 BIT 2,A CB 8D RES 1L
CB 58 BIT 3B CB 8E RES 1,(HL)
CB 59 BIT 3,C CB 8F RES 1,A
CB 5A BIT 3,D CB 90 RES 2B
CB 5B BIT 3,E CB 91 RES 2C
CB 5C BIT 3,H CB 92 RES 2D
CB 5D BIT 3L CB 93 RES 2E
CB SE BIT 3,(HL) CB 94 RES 2H
CB 5F BIT 3,A CB 95 RES 2L
CB 60 BIT 4,B CB 96 RES 2,(HL)
CB 61 BIT 4,C CB 97 RES 2A
CB 62 BIT 4,D CB 98 RES 3B
CB 63 BIT 4,E CB 99 RES 3C
CB 64 BIT 4H CB 9A RES 3D
CB 65 BIT 4L CB 9B RES 3E
CB 66 BIT 4,(HL) CB 9C RES 3H
CB 67 BIT 4,A CB 9D RES 3L
CB 68 BIT 5,B CB 9E RES 3,(HL)
CB 69 BIT 5,C CB 9F RES 3A
CB 6A BIT 5D CB A0 RES 4B
CB 6B BIT 5,E CB A1 RES 4.C
CB 6C BIT 5H CB A2 RES 4D
CB 6D BIT 5L CB A3 RES 4E
CB 6E BIT 5,(HL) CB A4 RES 4H
CB 6F BIT 5A CB A5 RES 4L
CB 70 BIT 6,B CB A6 RES 4,(HL)
cB 7 BIT 6,C CB A7 RES 4A
CcB 72 BIT 6,D CB A8 RES 5B
CcB 73 BIT 6,E CB A9 RES 5C
CB 74 BIT 6,H CB AA RES 5D
CB 75 BIT 6,L CB AB RES 5
CB 76 BIT 6,(HL) CB AC RES 5H
cB 77 BIT 6,A CB AD RES 5L
CB 78 BIT 7B CB AE RES 5,(HL)
CB 79 BIT 7.C CB AF RES 5A
CB 7A BIT 7.D CB BO RES 6B
CB 7B BIT 7,E CB B1 RES 6,C
CB 7C BIT 7H CB B2 RES 6D
CcB 7D BIT 7L CB B3 RES 6,E
CB 7E BIT 7,(HL) CB B4 RES 6H
CB 7F BIT 7.A CB B5 RES 6L
CB 80 RES 0B CB B6 RES 6,(HL)
CB 81 RES 0C CB B7 RES 6,A
CcB 82 RES 0D CB B8 RES 7,B
CB 83 RES O CB B9 RES 7.C
CB 84 RES OH CB BA RES 7D
CB 85 RES 0L CB BB RES 7,E
CB 86 RES 0O,(HL) CB BC RES 7H

C-5

N 205

™

USER'S MANUAL

Object Code Source Code Mode Object Code Source Code Mode
DD 23 INC X X DD 63 LD IXU,E

DD 23 INCW IX X DD 64 LD IXU,IXU

DD 24 INC XU DD 65 LD IXU,IXL

DD 25 DEC IXU DD 66 12 LD H,(IX+12H) |
DD 26 12 LD IXU,12H DD 67 LD IXUA

DD 27 LD IX,IY L DD 68 LD IXL,B

DD 28 34 12 JR Z,1234H X DD 69 LD IXL,C

DD 29 ADD IX,IX X DD 6A LD IXL,D

DD 2A 34 12 LD 1X,(1234H) | L DD 6B LD IXL,E

DD 2B DEC IX X DD 6C LD IXL,IXU

DD 2B DECW IX X DD 6D LD IXL,IXL .
DD 2C INC IXL DD 6E 12 LD L,(IX+12H) |
DD 2D DEC IXL DD 6F LD IXL,A

DD 2E 12 LD IXL,12H DD 70 12 LD (IX+12H),B I
DD 2F CPLW HL DD 71 12 LD (IX+12H),C |
DD 2F CPLW DD 72 12 LD (IX+12H),D I
DD 30 34 12 JR NC,1234H X DD 73 12 LD (IX+12H),E I
DD 31 LD (HL),IX L DD 74 12 LD (IX+12H),H |
DD 32 LD HL,DE L DD 75 12 LD (IX+12H),L |
DD 33 LD IX,(HL) L DD 77 12 LD (IX+12H),A I
DD 34 12 INC (IX+12H) | DD 78 INW HL,(C)

DD 35 12 DEC (IX+12H) | DD 79 OUTW (C),HL

DD 36 12 34 LD (IX+12H),34H | DD 7C LD AIXU

DD 37 LD IX,HL L DD 7D LD A IXL

DD 38 34 12 JR C,1234H X DD 7E 12 LD A, (IX+12H)

DD 39 ADD IX,SP X DD 84 ADD A|IXU

DD 3B LD HL,IX L DD 85 ADD AIXL

DD 3C LD HL,(BC) L DD 86 12 ADD A(IX+12H)

DD 3D LD HL,(DE) L DD 87 ADDW HL,IX

DD 3E SWAP IX DD 87 ADDW X

DD 3F LD HL,(HL) L DD 8C ADC AIXU

DD 40 INW BC,(C) DD 8D ADC AIXL

DD 41 OUTW (C),BC DD 8E 12 ADC A(IX+12H)

DD 44 LD B,IXU DD 8F ADCW HL,IX

DD 45 LD B,IXL DD 8F ADCW X

DD 46 12 LD B,(IX+12H) | DD 94 suB A,IXU

DD 47 LD I,HL L DD 95 suB A IXL

DD 47 LDW | HL L DD 96 12 SuB A (IX+12H) |
DD 4C LD C,IXu DD 97 SUBW HL,IX

DD 4D LD C,IXL DD 97 SUBW IX

DD 4E 12 LD C,(IX+12H) | DD 9C SBC AIXU

DD 50 INW DE,(C) DD 9D SBC AIXL

DD 51 OUTW (C),DE DD 9E 12 SBC A(IX+12H)

DD 54 LD D,IXU DD 9F SBCW HL,IX

DD 55 LD D,IXL DD 9F SBCW IX

DD 56 12 LD D,(IX+12H) | DD A4 AND AIXU

DD 57 LD HL,I L DD A4 AND XU

DD 57 LDW HL|I L DD A5 AND AJIXL

DD 5D LD E,IXL DD A5 AND XL

DD 5D LD E,IYL DD A6 12 AND (IX+12H) |
DD 5E 12 LD E,(IX+12H) | DD A6 12 AND A(IX+12H) |
DD 60 LD IXU,B DD A7 ANDW HL,IX

DD 61 LD IXU,C DD A7 ANDW X

DD 62 LD IXU,D DD AC XOR AIXU

C-7

N 2iLas

USER'S MANUAL

Object Code Source Code Mode Object Code Source Code Mode
DD E3 EX (SP),IX ED OF EX AC

DD E4 34 12 CALR PO,1234H X ED 10 12 INO D,(12H)

DD E5 PUSH IX ED 11 12 OUTO (12H),D

DD E6 12 ANDW (IX+12H) | ED 12 LD DE,BC L
DD E6 12 ANDW HL,(IX+12H) | ED 13 EX DE,IX L
DD E9 JP (IX) X ED 14 TST D

DD EC 34 12 CALR PE,1234H X ED 16 34 12 LDW (DE),1234H | L
DD EE 12 XORW (IX+12H) | ED 17 EX AD

DD EE 12 XORW HL,(IX+12H) | ED 18 12 INO E.(12H)

DD F3 1F DI 1FH ED 19 12 OUTO (12H),E

DD F4 34 12 CALR P,1234H X ED 1B EX DE,lY L
DD F6 12 ORW (IX+12H) | ED 1C TST E

DD F6 12 ORW HL,(IX+12H) | ED 1E SWAP DE

DD F7 SETC LW ED 1F EX AE

DD F9 LD SP,IX ED 20 12 INO H,(12H)

DD FB 1F El 1FH ED 21 12 OUTO (12H),H

DD FC 34 12 CALR M,1234H X ED 24 TST H

DD FE 12 CPW (IX+12H) | ED 27 EX AH

DD FE 12 CPW HL,(IX+12H) | ED 28 12 INO L,(12H)

DD FF RESC LW ED 29 12 OUTo (12H),L

DE 12 SBC A/12H ED 2B EX IX,IY L
DF RST 18H X ED 2C TST L

EO RET NV X ED 2F EX AL

EO RET PO X ED 30 12 INO (12H)

E1 POP HL ED 32 LD HL,BC L
E2 34 12 JP NV,1234H I X ED 33 EX HL,IX L
E2 34 12 JP PO,1234H I X ED 34 TST (HL)

E3 EX (SP),HL ED 36 34 12 LDW (HL),1234H | L
E4 34 12 CALL NV, 1234H I X ED 37 EX A,(HL)

E4 34 12 CALL PO,1234H I X ED 38 12 INO A,(12H)

E5 PUSH HL ED 39 12 OUTO (12H),A

E6 12 AND 12H ED 3B EX HL,IY L
E6 12 AND A/12H ED 3C TST A

E7 RST 20H X ED 3E SWAP HL

E8 RET PE X ED 3F EX AA

E8 RET V X ED 40 IN B,(C)

E9 JP (HL) X ED 41 outT (C),B

EA 34 12 JP PE,1234H I X ED 42 SBC HL,BC

EA 34 12 JP V,1234H I X ED 43 34 12 LD (1234H),BC | L
EB EX DE,HL ED 44 NEG A

EC 34 12 CALL V, 1234H I X ED 44 NEG

EC 34 12 CALL PE,1234H I X ED 45 RETN X
ED 00 12 INO B,(12H) ED 46 M 0

ED 01 12 OUTO (12H),B ED 47 LD LA

ED 02 LD BC,BC ED 48 IN C,(C)

ED 03 EX BC,IX ED 49 ouT (C)C

ED 04 TST B ED 4A ADC HLBC

ED 05 EX BC,DE ED 4B 34 12 LD BC,(1234H) | L
ED 06 34 12 LDW (BC),1234H | ED 4C MLT BC

ED 07 EX AB ED 4D RETI X
ED 08 12 INO C,(12H) ED 4E M 3

ED 09 12 OUTo (12H),C ED 4F LD RA

ED 0B EX BC,IY ED 50 IN D,(C)

ED OC TST C ED 51 ouT (C),D

ED 0D EX BC,HL

ED OE SWAP BC

C-9

. Z
@ 2iLa USER'S MA:UAL
Object Code Source Code Mode Object Code Source Code Mode
ED B5 ORW DE ED CB 28 SRAW BC
ED B5 ORW HL,DE ED CB 29 SRAW DE
ED B6 34 12 ORW 1234H ED CB 2A SRAW (HL)
ED B6 34 12 ORW HL,1234H ED CB 2B SRAW HL
ED B7 ORW HL ED CB 2C SRAW X
ED B7 ORW HL,HL ED CB 2D SRAW 1Y
ED B8 LDDR ED CB 30 EX BC,BC’ L
ED B9 CPDR X ED CB 31 EX DE,DE’ L
ED BA INDR ED CB 33 EX HL,HL’ L
ED BB OTDR ED CB 34 EX IX,IX'
ED BC CPW BC ED CB 35 EX Iy, 1y’ L
ED BC CPW HL,BC ED CB 38 SRLW BC
ED BD CPW DE ED CB 39 SRLW DE
ED BD CPW HL,DE ED CB 3A SRLW (HL)
ED BE 34 12 CPW 1234H ED CB 3B SRLW HL
ED BE 34 12 CPW HL,1234H ED CB 3C SRLW X
ED BF CPW HL ED CB 3D SRLW 1Y
ED BF CPW HLHL ED CB 90 MULTW BC
ED CO LDCTL HL,SR ED CB 90 MULTW HL,BC
ED C1 POP SR ED CB 91 MULTW DE
ED C4 12 CALR Nz,12H X ED CB 91 MULTW HL,DE
ED C5 PUSH SR ED CB 93 MULTW HL
ED C6 34 12 ADD HL,(1234H) | X ED CB 93 MULTW HL,HL
ED C8 LDCTL SR,HL ED CB 94 MULTW HL,IX
ED CB 00 RLCW BC ED CB 94 MULTW IX
ED CB 01 RLCW DE ED CB 95 MULTW HL,IY
ED CB 02 RLCW (HL) ED CB 95 MULTW IY
ED CB 03 RLCW HL ED CB 97 34 12 MULTW 1234H
ED CB 04 RLCW IX ED CB 97 34 12 MULTW HL,1234H
ED CB 05 RLCW IY ED CB 98 MULTUW BC
ED CB 08 RRCW BC ED CB 98 MULTUW HL,BC
ED CB 09 RRCW DE ED CB 99 MULTUW DE
ED CB 0OA RRCW (HL) ED CB 99 MULTUW HL,DE
ED CB 0B RRCW HL ED CB 9B MULTUW HL
ED CB 0C RRCW IX ED CB 9B MULTUW HL,HL
ED CB 0D RRCW Y ED CB 9C MULTUW HL,IX
ED CB 10 RLW BC ED CB 9C MULTUW IX
ED CB 11 RLW DE ED CB 9D MULTUW HL,IY
ED CB 12 RLW (HL) ED CB 9D MULTUW Iy
ED CB 13 RLW HL ED CB 9F MULTUW 1234H
ED CB 14 RLW IX ED CB 9F MULTUW HL,1234H
ED CB 15 RLW 1Y ED CB B8 DIVUW BC
ED CB 18 RRW BC ED CB B8 DIVUW HL,BC
ED CB 19 RRW DE ED CB B9 DIVUW DE
ED CB 1A RRW (HL) ED CB B9 DIVUW HL,DE
ED CB 1B RRW HL ED CB BB DIVUW HL
ED CB 1C RRW IX ED CB BB DIVUW HL,HL
ED CB 1D RRW 1Y
ED CB 20 SLAW BC
ED CB 21 SLAW DE
ED CB 22 SLAW (HL)
ED CB 23 SLAW HL
ED CB 24 SLAW IX
ED CB 25 SLAW 1Y

R 2iLa5 Ustr's ManIAL

Object Code Source Code Mode Object Code Source Code Mode

FD 3F LD (HL),HL L FD 97 SUBW Y

FD 44 LD B,IYU FD 9C SBC AlYU

FD 45 LD B,IYL FD 9D SBC AIYL

FD 46 12 LD B,(IY+12H). | FD 9E 12 SBC A/(lY+12H) |

FD 4C LD C,IYu FD 9F SBCW HL,IY

FD 4D LD C,IYL FD 9F SBCW Y

FD 4E 12 LD C,(IY+12H) | FD A4 AND AIYU

FD 54 LD D,IYU FD A4 AND IYU

FD 55 LD D,IYL FD A5 AND AIYL

FD 56 12 LD D,(IY+12H) | FD A5 AND IYL

FD 5C LD EIYU FD A6 12 AND (lIY+12H) I

FD 5D LD E,IYL FD A6 12 AND A(lY+12H) |

FD 5E 12 LD E,(IY+12H) | FD A7 ANDW HL,IY

FD 60 LD IYU,B FD A7 ANDW 1Y

FD 61 LD IYU,C FD AC XOR AlIYU

FD 62 LD IYU,D FD AC XOR YU

FD 63 LD IYU,E FD AD XOR AJIYL

FD 64 LD IYU,IYU FD AD XOR YL

FD 65 LD IYU,IYL FD AE 12 XOR (lIY+12H) |

FD 66 12 LD H,(IY+12H) | FD AE 12 XOR A(lY+12H) |

FD 67 LD IYU,A FD AF XORW HL,IY

FD 68 LD IYL,B FD AF XORW IY

FD 69 LD IYL,C FD B4 OR AlYU

FD 6A LD IYL,D FD B4 OR YU

FD 6B LD IYLE FD B5 OR AllYL

FD 6C LD IYL,IYU FD B5 OR YL

FD 6D LD IYL,IYL FD B6 12 OR (IY+12H) |

FD 6E 12 LD L,(IY+12H) I FD B6 12 OR A(IY+12H) |

FD 6F LD IYLA FD B7 ORW HL,IY

FD 70 12 LD (IY+12H),B | FD B7 ORW Y

FD 71 12 LD (IY+12H),C | FD BC CP AlYU

FD 72 12 LD (IY+12H),D | FD BC CP YU

FD 73 12 LD (IY+12H),E | L FD BD CP AIYL

FD 74 12 LD (IY+12H),H | FD BD CP IYL

FD 75 12 LD (IY+12H),L | FD BE 12 CP (IY+12H) |

FD 77 12 LD (IY+12H),A | FD BE 12 CP A (IY+12H) |

FD 79 34 12 OUTW (C),1234H FD BF CPW HLLIY

FD 7C LD AlYU FD BF CPW IY

FD 7D LD AlYL FD CO DDIR LW

FD 7E 12 LD A(IY+12H) | FD C1 DDIR IB,LW

FD 84 ADD AlYU FD C2 DDIR IW,LW

FD 85 ADD AIYL FD C3 DDIR W

FD 86 12 ADD A(lY+12H) | FD C4 56 34 12 CALR NZ,123456H X

FD 87 ADDW HL,IY FD C6 12 ADDW (lY+12H) |

FD 87 ADDW IY FD C6 12 ADDW HL/(IY+12H) |

FD 8C ADC AIYU FD CB 12 02 RLCW (IY+12H) |

FD 8D ADC AIYL FD CB 12 03 LD BC,(IYy+12H) | L

FD 8E 12 ADC A(lY+12H) | FD CB 12 06 RLC (IY+12H) |

FD 8F ADCW HL,IY FD CB 12 0A RRCW (IY+12H) |

FD 8F ADCW IY FD CB 12 0B LD (Ily+12H),BC 1 L

FD 94 SUB AIYU FD CB 12 OE RRC (IY+12H) |

FD 95 SUB AlYL FD CB 12 12 RLW (IY+12H) |

FD 96 12 SUB A(lY+12H) | FD CB 12 13 LD DE,(IY+12H) | L

FD 97 SUBW HL,IY FD CB 12 16 RL (IlY+12H) |
C-13

REVIPNAI

j @ ZLC.E USER's MANUAL

| APPENDIX D

INSTRUCTIONS AFFECTED BY NORMAL/
(EXTENDED MODE, AND LONG WORD MODE

This Appendix has two sets of tables. Each table is a Extended mode of operation, and the Table D-2 has the
subset of the Table in the Appendix B. The Table D-1has instructions which works differently in Word/Long Word
the instructions which works differently in the Native and ~ mode of operation.

‘ n
J

D-1

\ o

@ ZiLCE USER'S MANUAL

|
[Source Code Object Code

RETN ED 45
RST OOH c7
RST 08H CF
RST 10H D7
RST 18H DF
RST 20H E7
RST 28H EF
RST 30H F7
RST 38H FF

Table D-2. Instructions operates different in Long

Word Modes.

Source Code Object Code Source Code Object Code
EX (SP),HL E3 LD BC,DE DD 02
EX (SP),IX DD E3 LD BC,HL FD 02
EX (SP),IY FD E3 LD BC,IX DD 0B
EX BC,BC’ ED CB 30 LD BC,IY FD OB
EX BC,DE ED 05 LD DE,(BC) DD 1C
EX BC,HL ED 0D LD DE,(DE) DD 1D
EX BC,IX ED 03 LD DE,(HL) DD 1F
EX BC,IY ED OB LD DE,BC ED 12
EX DE,DE’ ED CB 3t LD DE,DE DD 12
EX DE,HL EB LD DE,HL FD 12
EX DE,IX ED 13 LD DE,IX DD 1B
EX DE,lY ED 1B LD DE,lY FD 1B
EX HLHL ED CB 33 LD HL,(BC) DD 3C
EX HL,IX ED 33 LD HL,(DE) DD 3D
EX HL,IY ED 3B LD HL,(HL) DD 3F
EX IX,IX’ ED CB 34 LD HL,BC ED 32
EX IX,lY ED 2B LD HL,DE DD 32
EX Iy, 1y’ ED CB 35 LD HL,HL FD 32
EXTS A ED 65 LD HL,I DD 57
EXTS ED 65 LD HL,IX DD 3B
LD (BC),BC FD oC LD HL,IY FD 3B
LD (BC),DE FD 1C LD I,HL DD 47
LD (BC)HL FD 3C LD IX,(BC) DD 03
LD (BC),IX DD 01 LD IX,(DE) DD 13
LD (BC),lY FD 01 LD IX,(HL) DD 33
LD (DE),BC FD 0D LD IX,BC DD 07
LD (DE),DE FD 1D LD IX,DE DD 17
LD (DE),HL FD 3D LD IX,HL DD 37
LD (DE),IX DD 11 LD IX,1IY DD 27
LD (DE),lY FD 11 LD 1Y,(BC) FD 03
LD (HL),BC FD OF LD IY,(DE) FD 13
LD (HL),DE FD 1F LD IY,(HL) FD 33
LD (HL),HL FD 3F LD IY,BC FD 07
LD (HL),IX DD 31 LD 1IY,DE FD 17
LD (HL),lIY FD 31 LD IY,HL FD 37
LD BC,(BC) DD oC LD IY,IX FD 27
LD BC,(DE) DD 0D LD SP,HL F9

LD BC,(HL) DD OF LD SP,IX DD F9
LD BC,BC ED 02 LD SP.IY FD F9

D-3

N 2iLa5

0

K

2
£x

{1

P
| oo]

g

- N2LTB

USER's MANUAL

APPENDIX E

INSTRUCTIONS AFFECTED BY

DDIR IM INSTRUCTIONS

This Appendix has instructions which can be used with the
Decoder Directive(s) Extend Immediate. There are eight
tables (E1-E8) which are the subset of the Table A, sorted
by the category of the instruction.

Note that the instructions listed here does not have the
DDIR Decoder Directive in front of the instructions listed
below, and notation used here may be different by the

assembler to be used.

Table E-1. Valid with DDIR IB in Extended mode. LW
bit status does not affect the operation

ADD

ADD

CALL
CALL
CALL
CALL
CALL
CALL
CALL

SuB

SuB

HL,(123456H)
SP,123456H
123456H
C,123456H
M,123456H
NC, 123456H
NZ,123456H
P,123456H
PE,123456H
PO, 123456H
Z,123456H
123456H
C,123456H
M,123456H
NC,123456H
NS, 123456H
NV,123456H
NZ,123456H
P,123456H
PE,123456H
PO, 123456H
S,123456H
V,123456H
Z,123456H
HL, (123456H)
SP,123456H

ED
ED
CD

56
56
34
34
34
34
34
34
34
34

34
34

12
12

12
12

Table E-2. Valid with DDIR IB. XM bit status does not
affect the operation. Transfer size determined by LW
bit. (Either with DDIR IB, DDIR I1B,LW or DDIR IB,W)

(123456H),BC
(123456H),DE
(123456H),HL
(123456H),HL
(123456H),IX
(123456H),IY
(123456H),SP
(IX+1234H),BC
(IX+1234H),DE
(IX+1234H),HL
(IX+1234H),lIY
(IY+1234H),BC
(IY+1234H),E
(IY+1234H),HL
IY+1234H),IX

SP+1234H),BC

(

(
(SP+1234H),DE
(SP+1234H),HL
(SP+1234H),IX
(SP+1234H),IY
BC,(123456H)
BC,(IX+1234H)
BC,(IY+1234H)
BC,(

(SP+1234H)

DE,(123456H)
DE, (IX+1234H)
DE, (IY+1234H)
DE,(SP+1234H)
HL,(123456H)
HL,(123456H)
HL, (IX+1234H)
HL, (1Y+1234H)
HL,(SP+1234H)
IX,(123456H)
IX,(1Y+1234H)
IX,(SP+1234H)
IY,(123456H)
IY,(IX+1234H)
IY,(SP+1234H)
SP,(123456H)
(BC),123456H
(DE),123456H
(HL),123456H

ED
ED
22

ED
DD
FD

12
12

N 2LaB

USER'S MANUAL

(IY+1234H)
A(IX+1234H)
A(IY+1234H)
(IX+1234H)
(IY+1234H)
HL, (IX+1234H)
HL, (IY+1234H)
(123456H),A
(123456H),HL
0,(IX+1234H)
0,(IY+1234H)
1,(IX+1234H)
1,(IY+1234H)
2,(IX+1234H)
2,(IY+1234H)
3,(IX+1234H)
3,(1Y+1234H)
4,(IX+1234H)
4,(IY+1234H)
5,(IX+1234H)
5,(1Y+1234H)
6,(IX+1234H)
6,(IY+1234H)
7,(IX+1234H)
7,(IY+1234H)
(IX+1234H)
(IY+1234H)
(IX+1234H)
(IY+1234H)
(IX+1234H)
(IY+1234H)
(IX+1234H)
(IY+1234H)
(IX+1234H)
(IY+1234H)
(IX+1234H)
(IY+1234H)
(IX+1234H)
(IY+1234H)
(IX+1234H)
(IY+1234H)
A, (IX+1234H)
A(IY+1234H)
(IX+1234H)
(IY+1234H)
0,(IX+1234H)
0,(IY+1234H)
1,(IX+1234H)
1,(IY+1234H)
2,(IX+1234H)
2,(IY+1234H)
3,(IX+1234H)
3,(IY+1234H)
4,(IX+1234H)
4,(IY+1234H)

SUBW
SuUBwW

XOR
XOR
XOR
XORW
XORW
XORW
XORW

5,(IX+1234H)
5,(IY+1234H)
6,(IX+1234H)
6,(1Y+1234H)
7,(1X+1234H)
7,(1Y+1234H)
(IX+1234H)
(IY+1234H)
(IX+1234H)
(IY+1234H)
(IX+1234H)
(IY+1234H)
(IX+1234H)
(IY+1234H)
(IX+1234H)
(IY+1234H)
(IX+1234H)
(IY+1234H)
A(IX+1234H)
A(IY+1234H)
HL, (IX+1234H)
HL,(IY+1234H)
(IX+1234H)
(IY+1234H)
A,(IX+1234H)
A(IY+1234H)
(IX+1234H)
(IY+1234H)
HL, (IX+1234H)
HL, (1Y+1234H)

34
34

N 2iLa5

USER'S MANUAL
Table E-7. Valid with DDIR IW in Long Word mode.
XM bit status does not affect the operation. (Either cPw HL,(IX+123456H) DD FE 56 34 12
with DDIR IW,LW or DDIR IW with LW bit set.) CPW HL,(IY+123456H) FD FE 56 34 12
’ . DEC (IX+123456H) DD 3556 34 12
LD BC,12345678H 01 78 56 34 12 DEC (IY+123456H) FD 3556 34 12
LD DE,12345678H 11 78 56 34 12 DIVUW (IX+123456H) DD CB56 34 12 BA
LD HL,12345678H 21 78 56 34 12 DIVUW (IY+123456H) FD CB56 34 12 BA
LD IX,12345678H DD 21 78 56 34 12 DIVUW HL,(IX+123456H) DD CB56 34 12 BA
LD 1Y,12345678H FD 21 78 56 34 12 DIVUW HL,(lY+123456H) FD CB&56 34 12 BA
LD SP,12345678H 31 78 56 34 12 INA A,(123456H) ED DB56 34 12
PUSH 12345678H FD F5 78 56 34 12 INAW HL,(123456H) FD DB56 34 12
INC (IX+123456H) DD 56 34 12
o . . INC (IY+123456H) FD 56 34 12
Table E-8. Valid with Dflf)IR |\:1v. XM bit nor LW bit LD (12345678H),A 39 78 56 34 12
status do not affect the operation LD (IX+123456H),56H DD 36 56 34 12 56
ADC A(IX+123456H) DD 8E 56 34 12 LD (IX+123456H),A DD 77 56 34 12
ADC A(lY+123456H) FD 8E 56 34 12 LD (IX+123456H),B DD 70 56 34 12
ADCW (IX+123456H) DD CE 56 34 12 LD (IX+123456H),C DD 71 56 34 12
ADCW (IY+123456H) FD CE 56 34 12 LD (IX+123456H),D DD 72 56 34 12
ADCW HL,(IX+123456H) DD CE 56 34 12 LD (IX+123456H),E DD 73 56 34 12
ADCW HL,(IY+123456H) FD CE 56 34 12 LD (IX+123456H),H ~ DD 74 56 34 12
ADD A(IX+123456H) DD 86 56 34 12 LD (IX+123456H),L DD 75 56 34 12
ADD A(IY+123456H) FD 86 56 34 12 LD (IY+123456H),78H FD 36 56 34 12 78
ADDW (IX+123456H) DD C6 56 34 12 LD (IY+123456H),A FD 77 56 34 12
ADDW (IY+123456H) FD C6 56 34 12 LD (IY+123456H),B ~ FD 70 56 34 12
ADDW HL,(IX+123456H) DD C6 56 34 12 LD (IY+123456H),C ~ FD 71 56 34 12
ADDW HL,(IY+123456H) FD C6 56 34 12 LD (IY+123456H),D ~ FD 72 56 34 12
AND (IX+123456H) DD A6 56 34 12 LD (IY+123456H),DE FD CB56 34 12 1B
AND (IY+123456H) FD A6 56 34 12 LD (IY+123456H),H FD 74 56 34 12
AND A(IX+123456H) DD A6 56 34 12 LD (IY+123456H),L ~ FD 7556 34 12
AND A(IY+123456H) FD A6 56 34 12 LD A(12345678H) 3A 78 56 34 12
ANDW (IX+123456H) DD E6 56 34 12 LD A(IX+123456H) DD 7E 56 34 12
ANDW (IY+123456H) FD E6 56 34 12 LD A(lY+123456H) FD 7E 56 34 12
ANDW HL,(IX+123456H) DD E6 56 34 12 LD B,(IX+123456H) DD 46 56 34 12
ANDW HL,(IY+123456H) FD E6 56 34 12 LD B,(IlY+123456H) FD 46 56 34 12
BIT 0,(IX+123456H) DD CB 56 34 12 46 LD C,(IX+123456H) DD 4E 56 34 12
BIT 0(IY+123456H) FD CB 56 34 12 46 LD C,(lY+123456H) FD 4E 56 34 12
BIT 1,(IX+123456H) DD CB 56 34 12 4E LD D,(IX+123456H) DD 56 56 34 12
BIT 1,(lY+123456H) FD CB 56 34 12 4E LD D(IY+123456H) FD 56 56 34 12
BIT 2,(IX+123456H) DD CB 56 34 12 56 LD E,(IX+123456H) DD 5E 56 34 12
BIT 2(IY+123456H) FD CB 56 34 12 56 LD E(lY+123456H) FD 5E 56 34 12
BIT 3,(IX+123456H) DD CB 56 34 12 5E LD H,(IX+123456H) DD 66 56 34 12
BIT 3,(Iy+123456H) FD CB 56 34 12 58 LD H,(IY+123456H) FD 66 56 34 12
BIT 4,(IX+123456H) DD CB 56 34 12 66 LD L.(IX+123456H) DD 6E 56 34 12
BIT 4,(IY+123456H) FD CB 56 34 12 66 LD L(IY+123456H) FD 6E 56 34 12
BIT 5(IX+123456H) DD CB 56 34 12 6E MULTUW (IX+123456H) DD CB56 34 12 9A
BIT 5(Y+123456H) FD CB 56 34 12 6E MULTUW (IY+123456H) FD CB56 34 12 9A
BIT 6,(IX+123456H) DD CB 56 34 12 76 MULTUW HL,(IX+123456H) DD CB&56 34 12 9A
BIT 6,(IY+123456H) FD CB 56 34 12 76 MULTUW HL,(IY+123456H) FD CB&56 34 12 9A
BIT 7(IX+123456H) DD CB 56 34 12 7E MULTW (IX+123456H) DD CB56 34 12 92
BIT 7(lY+123456H) FD CB 56 34 12 7E MULTW (IY+123456H) FD CB56 34 12 92
CcP (IX+123456H) DD BE 56 34 12 MULTW HL,(IX+123456H) DD CB56 34 12 92
CP (IY+123456H) FD BE 56 34 12 MULTW HL,(IY+123456H) FD CB56 34 12 92
cP A(IX+123456H) DD BE 56 34 12 OR (IX+123456H) DD B6 56 34 12
cP A(lY+123456H) FD BE 56 34 12 OR (IY+123456H) FD B656 34 12
CPW (IX+123456H) DD FE 56 34 12
CPW (IY+123456H) FD FE 56 34 12

a0

b
&

dh

f

I

i

BE

P
g
o
0

DR I
"f‘ﬁfuitfi’ Jeni it i
[P

e

Lo

¢ ‘5%

pex

D 23 R
@ & =
gn = 23

) !mu‘hu W\.u
& &2 w5 o2
z = a2 &
oy) B

. ¥ =

Brinte
Progucts Gu
{

ULl

= — TR
)
& ©
falvh]
i

N 2iLa5

USER'Ss MANUAL

INDEX

Symbols

JRESET ..ottt 1-5
8-Bit Load/Exchange Group........cccceevveevveeeieernvenneens 5-6
8080 compatible (Mode 0)ccceevvvveviviereeiiecieeieans 1-5
A
ADC Add with Carry (Word)ccceevverievieiieneeniine, 5-21
Add (BYEE) ..t 5-23
Add (WOrd) ..o 5-24
Add to Stack Pointer (Word)c.oceevvvieenieeninnnn. 5-25
Add/Subtract flagccoeeeiieiiciee e 5-2
Address manipulationc..cccccveenenieinennnencne. 3-1
AdAress SPACEccvvvirviiriniiecneeiene e 1-1
Addressing MOdeoovieeiiiiiiie e A-1
Addressing mode escape bytec.ccoceviiiiiennen A-1
Addressing mode escape bytes, addresses A-2
Addressing Modesc.ccevviiieineenieeneeneceen 1-4,4-1
AF or AF’ Register Selectccovcvecereriiiiciecnience 5-5
AND (BYEE) ..t 5-27
AND (WOTd) ...t 5-28
Arithmetic and Logical Groupccccccevvieiiieneennnens 5-9
Arithmetic Operation 5-10
Assembly language formatcccoeeveeiiiiienieenienne 4-1
Assigned Vector Base Register 5-15,6-3,6-6
Assigned Vectors Baseccccovveveviveviveeiee e 6-4
—B
BanK TeSt ...ccviiiiiiiricieveee e 5-30
Bank Test instructionscccocveveviiniiniieninnne ... 5-16
BC/DE/HL or BC'/DE'/HL’ Register Select................ 5-4
Binary-coded decimalccccoeecvvviviniiieieeeene 4-10,5-1
Bt TEST i 5-29
BIOCK /O e 5-5
BIOCK MOVE ..o 5-5

Block move, block search, and block I/O instruction 6-1
BloCK SEArChccveeveceiiiiecece e 5-2,5-5

Block Transfer and Search Group........ccccccveeee.. 5-1,5-8
Block transferccccocoerviieiniiiee, 5-2,5-8
Bus bandwidthcccooiiiiini e 1-5
Byte Ordering.....ccocevereeiiiiicicnenc e 3-2
Byte strings 4-10

Call and Restart.......cccocevvviviiiniee e
Call Relative
Call Relative
Call, Return, Push, and Pop
Carry flag .cooooveevveviveeie e
Carry or borrow operation
Chip Version ID Registerccoccevvveernecnniens
Compare (BYte)ccoevvviriiiieiicsieeienecsre e
Compare (Word)cocovvverceneeeninenen
Compare and Decrement (Byte)
Compare and Increment (Byte).........cccovevrcverineennnene
Compare, Decrement and Repeat (Byte) 5-37
Compare, Increment and Repeat (Byte)
Complement Accumulatorccocveveenenne
Complement Carry flagccocceeenneee

Complement HL Register (Word)
Condition Codesc.cceovvvvvvrveerninns

Conditional instructionsc..ccc.cc.....

Conditional Return instruction

Context SWItChingc.ccoceviniviiiciiiciies
CPU Control Groupcoceeveeenieeeririenreeireeieeeees
CPU Control Register Space
CPU Register Spacecoccovvecenieenenieneeicee e

Data frameocevveiiincieen e
Data manipulation
Data Types ...ccccoevvvveenenn

DDIR IB Immediate Byte
DDIR IB,LW Immediate Byte, Long Word Mode 3-2
DDIR IB,W Immediate Byte, Word Mode 3-2
DDIR IW,LW Immediate Word, Long Word Mode 3-2
DDIR IW,W Immediate Word, Word Mode 3-2
DDIR LW oottt s e
DDIR LW Long Word Modec..cocenieniniinirnennnne.
DDIRW it

DDIR W Word Modec..ccenenee

Decimal Adjust Accumulator
Decoder Directive
Decrement (Byte)
Decrement (Word)cooevevivniiineceiie e 5-45

4-10,5-2, 5-42
3- 2, 5-17, 5-43, A-1

. z orl
_@aLCE USER'S MANUAL
Interrupt mode......cccoveeiiiiniiciiiniinnn 6-1,6-2, 6-3, 6-5 M
Interrupt Priority Rankingccoceeveeveeniininiecieiennn, 6-2 -

Interrupt Registerc.cccceene. .. 2.3 Machine language bitccceovininniinnn A-1
Interrupt Register Extension .. 62 Main Bank Select
Interrupt service routingsc..ccvve... .. 1-3 Maskable Interrupt
Interrupt Vectors Mode 6-6 Memory Address SPacecccccveveveereerineeneenneenine 2-1
Interrupt Vectors 6-2 Memory Banking schemeccccoovvviiiiniinninnnnn 1-5
interrupt return instruction 5.5 memory addressing Mmodesccivrviiiiniiiennens 5-9
INEITUPDES ..o B-1 ModeTest .o 5-105
Interrupts, traps, and resetscccovvveerevnn. 1-4,6-1 Mode Test inStructions ... 5-16
IW decoder directive.................. Multiple register Dankscovverniivinniniinnnne, 1-5
IX Bank SeleCt wvvveveeeeiiin, Multiply (WOrd) .c..covveuveieiicieniniiciienienecneeieeie 5-106
IX or IX’ Register Select Multiply Unsigned (Byte)cccocvveevvninineninennne 5-104
IY Bank SeleCt v, Multiply Unsigned (Word)cccceeennininicriinennene 5-107
IY or IY’ Register Select N
J NATIVE MODE AND EXTENDED MODE 3-2
P oot Native or Extended Modeccoocvvevviciinniiniines 6-2
Jump Native/EXIENAEAccvivverieirieeniieeceere e 1-3
Jump and Call INStrUCHONScveevveveeereeesieiens 4-3 Negate Accumulator 5-108
JUMP RBIALIVEcovooveeeee e 5-1,5-81 Negate HLINSruction ..., 5-10
Negate HL Register (Word)cveevevvnvenccninncns 5-109
L NO OPEIALIONvieieeireiei e e 5-110
, N ration inStructionc..ccoveviiiciiiiniiene -
Ligar Memory AdU(65s SPace..c...c 15 NONMASKABLE INTERRUPT "ot
Load Acoumulator from R oF | T6gISter ... 5-16 Nonmaskable Interrupt (NMI)ccoveveieinininennens 6-1
Load and Decrement (Byte)cccorvevererrecvennnnnnns 5-96 (o]
Load and Decrement (Word)cceoeeevenienieniennns 5-97 -
Load and Increment (Byte) 5-100 Object-code compatibility ..
Load and Increment (Word)cccvveereevenrenrenss 5-101 ON-CHIP I/O ADDRESS SPACE.....
LOAA B FEGISEN c.v.veveeeeeeeees e A-1 On-Chip I/O Address Space
Load Control Register (BYte)c..ooveeureveeeereneen. 5-93 On-Chip Register Filescc.occoeoivinviiiicicne
Load from Control Register (Word)cccoouvean.. 5-94 Opcode Trap
Load from | or R Register (Byte).............. s 5-90 Operand............
Load | Register (Word) s 592 OR(Byte)
Load Immediate (BYE)c.covevvvreererreseerenreerenen. 5-83 OR(Word)
Load Immediate (Word) e 5-84 Output (Byte)
Load into Control Register (Word)c..cceerurvene.. 5-95 Output (to Page 0)....
Load into | or R Register (Byte) Output (Word)c....
Load Register (BYte)occrevvreenreenes Output Accumulator
Load Register (WOrd)c.coverrrverennrenne. 5-87,5-88, A-1 Output and Decrement (Byte)ccc.oovvvvnninns
Load Stack POINLETovevreveeeeeeeeeeeeesees e 5-89 Output and Decrement (Word)cccccovvivnnne.
Load, Decrement and Repeat (Byte) ..5-98 Outputand Increment (Byte)..........coccvvrerriincinc.
Load, Decrement and Repeat (Word) ..5-99 Outputand Increment (Word)ccocovennincienn.
Load, Exchange, SWAP and Push/Pop Group.......... 5-1 Output Decrement MEmMOTYccvvevveenieeniennieenine
Load, Exchange, SWAP, and PUSH/POP Group 5-7 Output Direct to Port Address (Byte)ccc......
Load, Increment and Repeat (Byte)cc.co....... 5-102 Output Direct to Port Address (Word)cc........ 5-126
Load, Increment and Repeat (Word) 5-103 Output increment Memory
load, arithmetic, logical, shift, and rotate 4-10 Output, Decrement and Repeat (Byte) 5-115
LOAA/EXCNANGE GIOUD ... 5-1 Output, Decrement and Repeat (Word) 5-116
LOCK oo, TR 5-5 Output, Decrement Memory Repeatccceee 5-114
LOCK/UNIOCK SEALUS ... 5-5 Output, Increment and Repeat (Byte) 5-119
Logical, signed numeric, or unsigned 4-10 OUtpUt, Increment and Repeat (WOl’d) 5-120
LoNg WOrd MOGEceueuereeceeereirienreneeecesciscens 5-5 Output, Increment Memory Repeat 5-118
LW decoder direCtiveccceeveriiieniencrininicceenieaennn 3-2

09 2L USER'S MANUAL
T \'/
Test (Byte) Vectored interrupt mode (Mode 2)cccoovveviinene 1-5
Test I/O Port
TRAP INTERRUPT ...ttt w
Trap and Break Re_gister : W decoder direCtiveccceveevinieiiiinninieeicieene
Trap handling rqutlne Word or Long Word block transfer ...
Trap on Instruction Fetch Word strings
Trap on Interrupt Vector Wordpome Word
Tr8D REGIStET vovoooeeeee 845 G WOMAMLONGWOTD vt
TST instruction....... Y4
TSTIO instruction
Zero byte input
U ZEIOlAG v
Ump relative/Call relativeccocveevevevinircnerienn, 1-6
Unsigned divide instruction............ccccccceonvenencnne 5-10

N 2L

3 T 20
& = 1% = w.mw
<4 o -
ot} ey et WE\W g .w i a M
b £ 3 s By ae ¢
o] ey aTma Somd i X
oy Ty P sy ooz B0

{0
)
£ fﬁ
Superintegration™
Products Guide
§X

IS

N 205 TerepHone ANSWERING DEevices

Brock

SuPERINTEGRATION” PRopucts Guipe

ROM ROM 78 | psp 78 | Dsp
et i
COUNTER/ WDT[236 RAM| P1
TIMERS | RAM l l AD | D/A AD | DA
PO [P1]P2] P3 P2 | P3 | PO 31 or 47 DIGITAL 1/0 31 or 47 DIGITAL 10|
Part NumBer | z8600/z8611 Z86C30/E30/C31/E31 289C65/289C66 289165/189166 |
DescripTioN 78® NMOS (CCP™) 8% Consumer Controller Processor (CCP™) | Telephone Answering Controller Low-Cost DTAD Controller i
78600 = 2K ROM Z86C30 = 28-Pin, 4K ROM 789C66 = ROMLess with 31 1/0 Pins 789166 = ROMLess with 31 1/0 Pins
28611 = 4K ROM 786C31 = 28-Pin, 2K ROM
786C40 = 40-Pin, 4K ROM
Z86E30, Z86E31, Z86E40 = OTP Version
PROCESS/SPEED | NMOS:8.12MHz CMOS: 12 MHz CMOS: 20 MHz CMOS: 20 MHz
FeaTuRes m 2K/4K ROM m 4K ROM/236 RAM ® 24K ROM (Z89C65 Only) m 24K ROM (289165 Only)
W 128 Bytes RAM ® Two Standby Modes | 16-Bit DSP m 16-Bit DSP
W 22/321/0 Lines m Two Counter/Timers ® 4K Word ROM W 6K Word DSP ROM
m On-Chip Oscillator H ROM/RAM Protect M 8-Bit A/D with Automatic m 8-Bit A/D with Automatic
W Two Counter/Timers W Four Ports (Z86C40/E40) Gain Control (AGC) Gain Control (AGC)
B Six Vectored, Priority Interrupts | m Three Ports (Z86C30/E30/C31/E31) m DTMF Macro Available m DTMF Macro Available
W UART (28611 Only) W Low-Voltage Protection W LPC Macro Available | LPC Macro Available
W Two Analog Comparators | 10-Bit PWM D/A | 10-Bit PWMD/A
® Low-EMI Option | Other DSP Software Options Available m Other DSP Software Options Available
W Watch-Dog Timer (WDT) B 471/0 Pins (Z89C65 Only) | 471/0 Pins (289165 Only)
W Auto Power-On Reset
M Low-Power Option
Packace 28-Pin DIP 28-Pin DIP 68-Pin PLCC 68-Pin PLCC
40-Pin DIP 40-Pin DIP 80-Pin QFP
44-Pin PLCC 44-Pin PLCC, QFP
SuppoRT 786G 1200ZEM - Emulator Z86CCPOOZEM - Emulator 789C6501ZEM - Emulator 789C6501ZEM - Emulator
PRODIIBTS Z0860000ZCO0 - Evaluation Board | Z86CCP0O0ZAC - Emulator 289C6500ZDB - Emulator 789C6500ZDB - Emulator

20860000ZDP - Adaptor Kit

Z86C5000ZEM - Emulator
Z86E3000ZDP - Adaptor Kit
Z86E4000ZDP - Program Adaptor Kit

28916500ZC0 - Evaluation Board

N2LT TVNmEo Prooucts

- SuperINTEGRATION™ PRopucTs GuiDe

BLock 16/8K ROM 6K ROM CHAR ROM 1K/6K ROM 2K/BK/16K ROM
Diacram 4K CHAR ROM 3K CHAR ROM COMMAND 28 CPU Z8 CPU
78CPU | RAM Z8CPU | RAM INTERPRETER WOT 124 RAM wor_ 1128256,
0sD 0SD ANALOG | o P2 P3 768 RAM
13 [TIMER] 5 7 |TIMER| 3 SYNC/DATA CTRL
PWM| WDT |PORTS PWM| WDT |PORTS SLICER po|p1| 2| P3
Part NumBer | zssc27/127/97/47/E47 186227 186128/286228/286129 186106/286129 186L70/71/72[13[14
75/16/T1/18
DescripTion Digital Television Controller | Standard DTC™ Features with| 286128/228 = Line 21 Closed | Z86L06 = Low-Voltage CMOS | Zilog Infrared Remote Controllers
(DTC™) Television, VCRs, and f Reduced ROM, RAM, PWM Outputs| Caption Controller (L21C™) Consumer Controller Processor | (ZIRG™) for IR Remote/Battery Operated
Cable for Greater Economy 786129/228 = Line 21 Closed |} Z86L29 = 6K Infrared Remote Applications Ranging in ROM: L70=2K,
Z86E47 = OTP Version Caption and EDS Controller Controller L71=8K,L72&78=16K,L73&74=32K,
L75=4K L76=12K L77=24K
PHOGESS/SPEED CMOS: 4 MHz CMOS: 4 MHz CMOS: 12 MHz Low-Voltage CMOS: 8 MHz Low-Voltage CMOS: 8 MHz
FEATURES @ 8K/16K/0TP ROM B 6K ROM, 256 Byte RAM ® Conforms to FCC Line 21 = 1K ROM and 6K ROM m Watch-Dog Timer (WDT)
@ 256 Byte RAM B 120x7-Bit Video RAM Format | Watch-Dog Timer (WDT) | Two Analog Comparators
m 160x7-Bit Video RAM B 0SD On-Board Programmable | & Parallel or Serial Modes | Two Analog Comparators with with Qutput Option
@ On-Screen Display - Color | Stand-Alone Operation Output Option | Two Standby Modes
08SD) Video Controller ~ Size . @ On-Board Data Sync and W Two Standby Modes W Two Enhanced Counter/Timers
B Programmable —Position Attributes Slicer | Two Counter/Timers — Auto Pulse
— Color B 7PWMs B On-Board Character Generator | ® Auto Power-On Reset —Reception/Generation
- Size W 96 Character Set - Golor | 2V Operation M Auto Power-On Reset
— Position Attributes E 3Kx6-Bit Char. Gen. ROM — Blinking W RC Oscillator Option m 2V Operation
B 13 PWMs for D/A Conversion | @ Watch-Dog Timer (WDT) — ltalic W Low-Noise Option | RC Oscillator Option
B3 128-Character Set B Low-Voltage Protection - Underline ®| Low-Voltage Protection M Low-Voltage Protection
B 4Kx6-Bit Char. Gen. ROM & Three Ports/20 Pins — Extended Data Services m High-Current Drivers (2,4) | m High-Current Drivers
| Watch-Dog Timer (WDT) B Two Standby Modes — Three OTP Versions
B Low-Voltage Protection B Low-EMI Mode Available
| Five Ports/36 Pins —Z86E72/73/74
B Two Standby Modes
B Low-EMI Mode
PAGI(AGE 64-Pin DIP 40-Pin DIP 18-Pin DIP 18-Pin DIP 286171=20-Pin DIP/SOIC
18-Pin SOIC 186170/L75=18-Pin DIP, SOIC
286L72/L76/1.77=40,44-Pin DIP,
PLCC, QFP
786L.74=64/68-Pin
SupPORT 28662700ZC0 - Evaluation Board§ Z86C2700ZDB - Emulator Support Documentation Z86C5000ZEM - Emulator 2861.7200TSC - Emulator
Propucts 786C2700ZDB - Emulator 786C2702ZEM - Emulator Provided with the device Z86L7100ZEM - Emulator
786L.7100ZDB - Emulator

€S

286C2700ZEM - Emulator

786C2700ZC0 - Evaluation Board

S-S

BLock
DincrAm

DiscreTe Z8® MICROCONTROLLER

512 Byte ROM

289 CPU

WDT | 64 RAM

P2 P3

1K ROM

28® CPU

128
wor | A28

PO P2

SUPERINTEGRATION' Pronucts Guipe

1KROM
28% CPU

128
wor | A28

SPI
leps

Part NumBer

186C04/286E04

186006

Description

Consumer Controller Processor (CCP™)

286C04 = 8-Bit Low Cost 1 Kbyte ROM MCU

Consumer Controller Processor (CCP™)

with 512 Byte ROM Z86E04 = OTP Version with 1 Kbyte ROM
Process/SPEED | cwmos:smH: CMOS: 8 MHz CMOS: 12 MHz
FEATURES W 512 Byte ROM m 1Kbyte ROM m 1 Kbyte ROM

W 64 Byte RAM B 128 Byte RAM m 128-Byte RAM

| Two Standby Modes B Two Standby Modes | Two Standby Modes

W One Counter/Timer m Two Counter/Timer | Two Counter/Timer

m| ROM Protect m ROM Protect m ROM Protect

B Two Analog Comparator W Two Analog Comparator M Two Analog Comparator

W Auto Power-On Reset B Auto Power-On Reset B Auto Power-On Reset

W Low-Voltage Protection W Low-Voltage Protection (ROM Only) B Low-Voltage Protection (ROM Only)

m 141/0 m 1410 m 141/0

B RC Oscillator Option W Low-Noise Option | RC Oscillator Option

B Low-Noise Option m Serial Peripheral Interface (SPI)
Packace 18-Pin DIP 18-Pin DIP 18-Pin DIP

18-Pin SOIC 18-Pin SOIC 18-Pin SOIC

SuPPORT
Probucrs

Z86CCPO0ZEM - Emulator
Z86CCPO0ZAC - Emulator

286C0800ZCO - Evaluation Board

Z86C0B00ZDP - Adaptor Kit
286C1200ZEM - Emulator
286C1200ZPD - Adaptor Kit
Z86CCPOOZEM - Emulator
Z86CCPOOZAC - Emulator

Z86E0600ZDP - Adaptor Kit
Z86C5000ZEM - Emulator
786C5000ZDP - Adaptor Kit
Z86CCPO0ZEM - Emulator
286CCPO0ZAC - Emulator

BLock
DincraAM

MumMEnlA/PC- Aubio

Bus | DAC
F F
Sample Rate

Generator

Sound Blaster
Command Set
Interpreter

MIDI
Interface

DSP
512 RAM|4K ROM
16-BIT MAC

Peripherals
Interface

SupERINTEGRATION™ PRopucTs Guine

¥

DSP
512 RAM|4K ROM
16-BIT MAC

Peripherals| Codec
Interface | WF

ISA Bus IIF

DMA |Interface
Logic | Logic

Interrupt| Control
Logic | Logic

Registers

| Pant NumBer | 285321 289320 289321/289371 25380
it Digital Audio Processor -Bit Digital Signal Processor -Bit Digital Signal Processor mall Computer System Interface
Description 8-Bit Digital Audio P 16-Bit Digital Signal P\ 16-Bit Digital Signal P Small Computer System Interface (SCSI)
789371= OTP Version
PROCESS/SPEED | cMos: 12 MH: CMOS: 10 MHz CMOS: 20 MHz Clock: 1.5 Mb/s
ound Blaster™ Compatible 3 16-Bit Multiply/Accumulate B 16-Bit Multiply/Accumulate E Compatible in-ou
FEATURES Sound Blaster™ Compatibl 16-Bit Multiply/A lat 16-Bit Multiply/A I C ible 5380 Pin-out
B ADPCM Decompression 100 ns 50 s H CMOS
B 8-Bit DAC Interface 8 512 Word RAM @ 512 Word RAM @ Asynchronous I/F Supports 1.5 Mb/s
B Successive Approximation ADC B 4K Word RAM = 4K Word ROM @ 48 mA Drivers
Algoritant & Peripherals Interface Bus B Peripherals Interface Bus B Arbitration Support
B MIDI Interface B 74 Instruction Set @ CODEC Interface B Support Normal or Block Mode DMA
Packace 40-Pin DIP 40-Pin DIP 40-Pin DIP 40-Pin DIP
44-Pin PLCC 44-Pin PLCC 44-Pin PLCC 44-Pin PLCC
SupPoORT Support Documentation 789C0000ZEM - Emulator 78937100ZEM - Emulator Support Documentation
Pnon“c-rs Provided with Device Provided with Device

SoundBlaster™ is a Trademark of Creative Labs, Inc.

6-S

Kevsoarn/Input DEVICES

SUPERINTEGRATION PRropucts Guipe

4K ROM 2/4K ROM 8K OTP/ROM 2KROM
zocey | man z8%cPU | Ram 289 CPU | RAM 26° CPU | RAM
COumerDmmers (I:Wmeimme"i" Counter/Timer Coun‘l:’g:mer
wDT Po | Pt |P2|p3
HERE PoPifre]Ps po | P2 | P3
Parr NumBer | z8615 28614/28602 186E23 86C17
DescripTion Keyboard MCU 28602 = 2K ROM Keyboard MCU Keyboard OTP MCU Mouse MCU
28614 = 4K ROM Keyboard MCU

PHOGESSISPEEII NMOS: 4, 5 MHz NMOS: 4 MHz CMOS: 4 MHz CMOS: 4 MHz
FEATURES = 4KROM B 4KROM m 8K ROM m 2K ROM

B 124-Byte RAM H 124 Byte RAM B 256 Byte RAM W 124 Byte RAM

| 321/0 Lines A 321/0 Lines B 321/0 Lines m 141/0 Lines

B Two Counter/Timers @ Two Counter/Timers B Two Counter/Timers | Two Counter/Timers

W Watch-Dog Timer (WDT) B Dedicated Row Column Pins B Dedicated Row Column Pins W Dedicated Opto-Transistor Pins

B RC Oscillator W Integrated Pull-up Resistors

W Dedicated Row Column Pins m Power-Down Modes

m Data/Clock Pins B Power-On Reset (POR)

| Direct Connect LED Pins W Watch-Dog Timer (WDT)
Packace 40-Pin DIP 40-Pin DIP 40-Pin DIP 18-Pin DIP

44-Pin PLCC 44-Pin PLCC 44-Pin PLCC 18-Pin SOIC
SuPPORT 20861500ZCO0 - Evaluation Board 70860200ZC0 - Evaluation Board 70860200ZCO - Evaluation Board 786C1200ZEM - Emulator
Probucts 286G1200ZEM -Emulator 786C1200ZEM - Emulator 286C1200ZEM - Emulator

20861500ZDP - Adaptor Kit

Z0860200ZDP - Adaptor Kit
786C1200ZPD - Emulator Pod

£0860200ZDP - Adaptor Kit

N 2iL5 Z80® Eveeppep CONTROLLERS

BLock
| Diacram

=

SuPERINTEGRATION” PRobucts Guipe

CTC| CGC

SI0 | wbT

280 CPU

CGC
WDT
CTC
280 CPU

PIO

SI0

Part Numser

184C01

184080

184013/2184C13

184015/284C15

| DescripTioN

Z80® GPU with Clock Generator/Clock

Killer 1/0 (Three Z80® Peripherals)

Intelligent Peripheral Controller

Enhanced Intelligent Peripheral

! ProcEss/SPEED

CMOS: 10 MHz

CMOS: 8, 10, 12 MHz

784013 = CMOS: 6, 10 MHz
784C13 = CMOS: 6, 10 MHz

784015 = CMOS: 6, 10 MHz
284C15 = CMOS: 16 MHz

FEATURES

B Clock Generator/Controller
B Four Power Down Modes

& Serial Input/Qutput (SI0)
Counter/Timer Circuit (CTC)
B Plus Eight I/0 Lines

Three 8-Bit Ports

Serial Input/Output (SI0)
Counter/Timer Circuit (CTC)
Watch-Dog Timer (WDT)
Clock Generator Circuit (CGC)
Wait State Generator (WSG)
Power-On Reset (POR)

Two Chip Selects

Evaluation Mode

Serial Input/Qutput (SI0)
Counter/Timer Circuit (CTC)
Watch-Dog Timer (WDT)
Clock Generator Circuit (CGC)
Four Power-Down Modes
Power-On Reset

Two Chip Selects

32-Bit CRC

Wait State Generator (WSG)
Evaluation Mode

§ Packace

44-Pin QFP
44-Pin PLCC

84-Pin PLCC
80-Pin QFP

84-Pin PLCC

100-Pin QFP
100-Pin VOFP

SuPPORT
Probucts

784C9000ZC0 - Evaluation Board

Z84C9000ZCO0 - Evaluation Board

784C1500ZC0 - Evaluation Board

284C1500ZC0 - Evaluation Board

BLock
| DincRAm

Mopem/Fax

DSP
512 RAM[4K ROM
16-BIT MAC

DATA | RAM
1/0 1/0

28 DSP

24K | 4K WORD
ROM ROM

256 BYTES[512 WORD
RAM RAM

8-Bit 10-Bit
AD D/A

28 DSP

4K WORD
ROMLess | ""aom

256 BYTES[512 WORD
RAM RAM

8-Bit 10-Bit
AD D/A

(Address | Window
Decoder| Decoder

Five Config
Registers
Peripheral Bus
{16-51)
Attnbute Memory
(256 Bytes)

oo

~>»ImIv—ImDo

| Part NumBer | zsscoo 289120 289920 86017
3 DescripTion 16-Bit Digital Signal Processor Zilog Modem/Fax Controller Zilog Modemy/Fax Controller PCMCIA Interface Adaptor
PHOBESSISPEED CMOS: 10, 15 MHz CMOS: 20 MHz CMOS: 20 MHz CMOS: 20 MHz
FEA]‘UIIES B 16-Bit Multiply/Accumulate B Z8® with 24 Kbyte ROM B 78 with 64K External Memory B 256 Bytes of Attribute Memory
i B 75ns B 16-Bit DSP with 4K Word ROM DSP with 4K Word ROM | Five Configuration Registers
B Two Data RAMs (256 Words each) & 8-Bit AD 8-Bit AD m EEPROM Sequencer or SPI Interface
B 4KWord ROM B 10-Bit D/A (PWM) 10-Bit D/A B PCMCIA to /0, Memory or Both
64Kx16 Ext. ROM O Library of Macros Library of Macros H PCMCIA to ATA/IDE
B 16-Bit /0 Port O 471/0 Pins B 471/0 Pins W ATA/IDE to ATA/IDE
74 Instructions 8 Two Comparators Independent 8% § = Two Comparators Independent Z8® W 3.0Vio05.5V Operation
B Most Single Cycle and DSP Operations Power-Down and DSP Operations Power-Down W 8- or 16-Bit Peripheral Support
B Two Conditional Branch Inputs, Mode Mode
Two User Qutputs
Library of Macros
‘ B Zero Overhead Pointers
PaciacE 68-Pin PLCC 68-Pin PLCC 68-Pin PLCC 100-Pin VQFP
60-Pin VQFP
SuPPORT Z89G0000ZEM - Emulator 789C6501ZEM - Emulator 789C6501ZEM - Emulator 78601700ZCO - Evaluation Board
Probucts Z89C0000ZCC - Emulator 789C6500ZDP - Emulator 289C6500ZDB - Emulator

gl-s

Si-S

i BLock
DincRam

SCC

*

3

DMAIDMADMAIDMA|

SCC

Part Numser

28030/280C30
28530/285C30

216635

285C80

E DescripTioN

Serial Communication Controller
28030/Z80C30 = Multiplexed Bus
28530/285C30 = Non-Multiplexed Bus

Enhanced Serial Communication Controller
78230/280230 = Dual Channel
785233 = Single Channel

Integrated Serial
Communication Controller

SCSCI Serial Communication
and Small Computer Interface

Process/Speen

78030/28530 = NMOS: 4, 6, 8 MHz
280C30/285C30 = CMOS: 8,10 16 MHz
Clock: 2, 2.5, 4 Mb/s

CMOS: 10, 16 20 MHz
Clock: 2.5, 4.0, 5.0 Mb/s

CMOS: 10, 16 MHz
Clock: 2.5, 4.0 Mb/s

CMOS: 10, 16 MHz
Clock: 2.5 Mb/s

| FEATURES

Two Independent Full-Duplex
Channels
B Enhanced DMA Support:
B 10x19 Status FIFO
14-Bit Byte Counter
0 NRZ/NRZI/FM Encoding Modes

2 Full Dual-Channel SCC Plus Deeper
FIFOs:
— 4 Bytes on Transmitters
— 8 Bytes on Receivers

B3 DPLL Counter Per Channel

& Software Compatible to SCC

Full Dual-Channel SCC
Four DMA Controllers
Bus Interface Unit

BE@

Two Independent Full-Duplex Channels

B Direct SCSI Bus Interface

& Supports SCSI ANSI-X3.131-1986
Standard

| PacKAGE

40-Pin DIP
44-Pin CERDIP
44-Pin PLCC

40-Pin DIP
44-Pin PLCC
44-Pin QFP (285233 Only)

68-Pin PLCC

68-Pin PLCC
100-Pin VQFP

SuppoRT
| Probucts

Z8018600ZCO0 - Evaluation Board
28523000ZC0 - Evaluation Board
28018100ZCO0 - Evaluation Board
ZEPMD000002 - EPM™ Manual

28018600ZCO0 - Evaluation Board
28S518000ZCO - Evaluation Board
78038000ZC0 - Evaluation Board
£8523000ZC0 - Evaluation Board
ZEPMDC00002 - EPM™ Manual

28018600ZCO0 - Evaluation Board

ZEPMD00002 - EPM™ Manual

Li-S

N 2iL5 Mass STORAGE

BLock
Diacram

UART

cPU | 0sC
256 RAM [CLOCK
Po|P1|P2|P3

8K PROM| UART
CPU
256 RAM

P0|P1]P2|P3

7

£

DSP
512 RAM|4K ROM
16-BIT MAC

DATA | RAM
1/0 1/0

SUPERINTEGRATION™ PRoDUCTS GUIDE

MULT|DIV[UART
CPU | 0SC

256 RAM |CLOCK

Po|P1|P2|P3

Part Numser 286C91/28691 286E21/286C21 289C00 286093
DESCRIPTION ROMLess 8% 786E21 = 8K OTP 16-Bit Digital Signal Processor ROMLess Enhanced Z8% Mult/Div
786C21 = 8K ROM
PROGESSISPEED Z86C91 = CMOS: 16 MHz CMOS: 12, 16 MHz CMO0S: 10, 15 MHz CMOS: 20, 25, 33 MHz
78691 = NMOS: 12 MHz
FEATURES B Full-Duplex UART B 256 Byte RAM 2 16-Bit Multiply/Accumulate | 16x16 Multiply 17 Clocks
® Two Standby Modes B Full-Duplex UART B 75ns m 32x16 Divide 20 Clocks
(STOP and HALT) @ Two Standby Modes B Two Data RAMs (256 Words Each) W Full-Duplex UART
B 28 Bit (STOP and HALT) B 4K Word ROM W Two Standby Modes (STOP and HALT)
B Counter/Timer 8 Two Counter/Timers @ 64Kx16 Ext. ROM W Three 16-Bit Counter/Timers
B ROM Protect Option B 16-Bit /0 Port
RAM Protect Option B 74 Instructions
B Low-EMI Option B Most Single Cycle
@ Two Conditional Branch Inputs,
Two User Outputs
B8 Library of Macros
B Zero Overhead Pointers
Packace 40-Pin DIP 40-Pin DIP 68-Pin PLCC 40-Pin DIP
44-Pin PLCC 44-Pin PLCC 44-Pin PLCC
44-Pin QFP 44-Pin QFP 44-Pin QFP
SupPoRT 70860000ZCO - Evaluation Board Z0860000ZCO - Evaluation Board 789C00ZEM - Emulator 20860000ZCO0 - Evaluation Board

Probucrs

Z86C0000ZUSP064 - Signum Emulator
286C1200ZPD - Signum Emulator Pod

286C0000ZUSP064 - Signum Emulator
286C1200ZPD - Signum Emulator Pod

286C0000ZUSP064 - Signum Emulator
786C0001ZUSP064 - Signum Emulator
786C9300ZPD - Signum Emulator Pod
786C9301ZPD - Signum Emulator Pod

61-S

N 205 Bus INTERFACE SuPeRINTEGRATION” PRopucTs GUIDE

BLock Address | Window | P Address | Window | P Address | Window | P 20MA [2128Byte| E
Dircram Decoder| Decoder | E Decoder | Decoder | E Decoder| Decoder | E P FIFOs | ¢
¢o [e ¢ s [oig 18 o [toig] 18 [Pt |20
My Registers | P Y Mu Registers | P Y Mu Registers | PY Registers EHS
Cs - HS Cs HS Cs - HS B 810 LE
| Peripheral Bus | E 1 Pt:,ﬁtheral Bus | E | Peripheral Bus | E g Map Ranges R
A (8-Bit) R A (16-Bit) 2 A (16-Bit) 2 Artitraton Logie |
i Attribute M Attribute M
s ¢ B | ¢ R | ¢ N
Part NumBer | 286016 286017 286M17 286020
DescripTion 8-Bit PCMCIA PCMCIA Interface Adaptor PCMCIA Interface Adaptor PCl/Multifunction Bridge
Interface Adaptor
PROBESSISPEED CMOS: 20 MHz CMOS: 20 MHz CMOS: 20 MHz CMOS: 33 MHz
Features W 786017 with 8-Bit m 256 Bytes of Attribute Memory W Mirror Image Pin-Out of Z86017 for W 256 Bytes of Configuration Memory
Peripheral Bus Only W Five Configuration Registers Opposite PCB - Surface Layout W 64 PCI Configuration Registers
M EEPROM Sequencer or SPI | Eight Programmable Memory or I/0 Map
Interface Ranges with Independent Timing Control
m PCMCIAto /0, Memory or Both m 128 Byte FIFQ's
m PCMCIA to ATA/IDE | Two Full Featured DMA Channels
W ATA/IDE to ATA/IDE m PCl Initiator/Target Operations
| 3.0Vto 5.5V Operation m On-Chip Peripheral Bus Arbitration
W 8- or 16-Bit Peripheral Support
Packace 48-Pin VQFP 100-Pin VQFP 100-Pin VQFP 160-Pin QFP
64-Pin VQFP
SupPPORT 78601600ZC0 - Evaluation Board 28601700ZC0 -Evaluation Board 28601700ZC0 - Evaluation Board Available Q494
PROIIIIG'I'S (Available Q494)
_ _

ANSILa5

-3 3t I
Sy Gdie7 }
Ji‘fijx‘}ﬁi}‘}w; i

AT 5
Apnemnglin S
Appendix D
Apnendix E

index

Superintegration™
Products Guide

Literature Guide

Zilog's Sales Offices

Representatives
& Distributors

N 2iLa5 LITERATURE GUIDE

\
Z8° MICROCONTROLLERS - CONSUMER FAMILY OF PRODUCTS

Databooks By Market Niche Part No Unit Cost
28% Microcontrollers Databook DC-8305-02 $5.00
| ags o
| Product Specifications
286C07 CMOS Z8 8-Bit Microcontroller
| 786C08 CMOS Z8 8-Bit Microcontroller
Z86E08 CMOS Z8 8-Bit OTP Micracontroller
286C11 CMOS Z8 Microcontroller
786C12 CMOS Z8 In-Circuit Microcontroller Emulator
786C21 8K ROM Z8 CMOS Microcontroller
Z86E21 CMOS Z8 8K OTP Microcontroller
786C61/62/96 CMOS Z8 Microcontroller
786C63/64 32K ROM Z8 CMOS Microcontroller
786C91 CMOS Z8 ROMIless Microcontroller
Z86C93 CMOS Z8 Multiply/Divide Microcontroller
Support Product Specifications
| £0860000ZC0 Development Kit
| Z86C0800ZC0 Applications Board
286C0800ZDP Adaptor Board
786E2100ZDF Adaptor Kit
Z86E2100ZDP Adaptor Kit
786E2100ZDV Adaptor Kit
786E2100ZDV Adaptor Kit
' Z86E2101ZDF Conversion Kit
Z86E2101ZDV Conversion Kit
‘ 786C6100TSC 286C61/63 MCU OTP Emulation Board
| 786C6200ZEM In-Circuit Emulator
‘ 286C1200ZEM Z8® In-Gircuit Emulator -C12
| Z8® S Series Emulators, Base Units and Pods
Additional Information
Zilog's Superintegration™ Products Guide
Literature Guide
Third Party Support Vendors
Zilog's Sales Offices, Representatives and Distributors
|
Infrared Remote (IR) Controllers Databook DC-8301-04 $5.00

| Product Specifications

286L06 Low Voltage CMOS Consumer Controller Processor ﬁPreIiminary)
786L.29 6K Infrared (IR) Remote (ZIRC™) Controller (Advance Information)
J Z86L70/L71/L72/L75/L76 Zilog IR (ZIRC™) CCP™ Controller Family (Preliminary)
! Z86E72/ET3/E74 Zilog IR (ZIRC™) CCP™ Controller Family (Preliminary)
Application Note
| Beyond the 3 Volt Limit
' Support Product Specifications
| Z86L.7100ZDB Emulator Board
‘ Z86L7100ZEM ICEBOX™ In-Circuit Emulator Board
~ Additional Information
Zilog's Superintegration™ Products Guide
Literature Ordering Guide
Zilog's Sales Offices, Representatives and Distributors

N 2iLa5 LITERATURE GUIDE

Z8° MICROCONTROLLERS - CONSUMER FAMILY OF PRODUCTS
Databooks By Market Niche Part No Unit Cost

Telephone Answering Device Databook DC-8300-02 $5.00

Product Specifications
289065, Z89C66 (ROMIless) Dual Processor T.A.M. Controller (Preliminary)
289C67, Z89C68/C69 (ROMIess) Dual Processor Tapeless T.A.M. Controller (Preliminary)
Development Guides
289C65 Software Development Guide
289C67/C69 Software Development Guide
Technical Notes
Using Samsung KT8554 Codec on the ZTAD Development Board
789C67/C69 Design Guidelines
789C67/C69 ARAM Bit-Rate Measurements
289C67 Codec Interfacing (Preliminary)
Controlling the Out -5V and Codec Clock Signals for Low-Power Halt Mode
Support Product Specifications
£89C5900ZEM Emulation Module
Z89C6500ZDB Emulation Board
78906501ZEM ICEBOX™ In-Circuit Emulator
289C6700ZDB Emulator Board
289C6700ZEM ICEBOX™ Emulator Board
| Additional Information
‘ Zilog's Superintegration™ Products Guide
' Literature Ordering Guide
Zilog's Sales Offices, Representatives and Distributors

L-3

N 2iLas LITERATURE GUIDE

?80 MICROCONTROLLERS - PERIPHERALS MULTIMEDIA FAMILY OF PRODUCTS
Databooks By Market Niche Part No

Leyboard/Mouse/Pointing Devices Databook DC-8304-00

" Product Specifications
78602 NMOS Z8® 8-Bit Keyboard Controller
28614 NMOS Z8° 8-Bit Keyboard Controller
28615 NMOS Z8°® 8-Bit Keyboard Controller
Z86E23 Z8® 8-Bit Keyboard Controller with 8K OTP
| 286C04 CMOS Z8° 8-Bit Micracontroller
286008 CMOS Z8® 8-Bit Microcontroller
288C17 CMOS Z8@ 8-Bit Microcontroller
Additional Information
Zilog's Superintegration™ Products Guide
\ Literature Guide

Unit Cost
$5.00

PC Audio Databook DC-8317-00 $5.00

Product Specifications
286321 Digital Audio Processor (Preliminary)
| 789320 16-Bit Digital Signal Processor (Preliminary)
289321/371 16-Bit Digital Signal Processor (Preliminary)
789331 16-Bit PC ISA Bus Interface (Advance Information)
789341/42/43 Wave Synthesis Chip Set (Advance Information)
25380 Small Computer System Interface
Additional Information
Zilog's Superintegration™ Products Guide
| Literature Guide

L-5

NS5

LITERATURE GUIDE

'Z8° MICROCONTROLLERS LITERATURE (Continued)

'Technical Manuals and Users Guides Part No. Unit Cost
Z8® Microcontrollers Technical Manual DC-8291-02 5.00
286018 Preliminary User's Manual DC-8296-00 N/C
DI%Ita| TV Controller User's Manual DC-8284-01 .00
289000 16-Bit Digital Signal Processor User's Manual/DSP Software Manual DC-8294-02 5.00
28695 16-Bit Digital Signal Processor User Manual DC-8595-00 5.00
286017 PCMCIA Adaptor Chip User's Manual and Databook D(C-8298-03 5.00

| PLC Z89C00 Cross Development Tools Brochure DC-5538-01 N/C

|
Z8° Application Notes Part No Unit Cost

 The Z8 MCU Dual Analog Comparator DC-2516-01 N/C

| 8 A&)Ilcatlons for 1/Q Port Expansions DC-2539-01 N/C
Z86E21 78 Low Cost Thermal Printer DC-2541-01 N/C

' Zilog Family On-Chip Oscillator Design DC-2496-01 N/C

- Using the Zilog 28606 SPI Bus D(-2584-01 N/C

| Interfacing LCDs to the Z8 DC-2592-01 N/C

- X-10 Compatible Infrared ﬂI_R) Remote Control DC-2591-01 N/C

- Z86C17 In-Mouse Applications , DC-3001-01 N/C
286C40/E40 MCU APDlIC&tIOﬂS Evaluation Board__ DC-2604-01 N/C
286C08/C17 Controls A Scrolling LED Messac};e Display DC-2605-01 N/C
£86C95 Hard Disk Controller Flash EPROM Interface) DC-2639-01 N/C
Three Z8® Applications Notes: Timekeeping with Z8; DTMF Tone Generation; DC-2645-01 N/C

Serial Communication Using the CCP Soitware UART

L-7

N 2iL05 LITERATURE GUIDE

Z80°%/Z8000° DATACOMMUNICATIONS FAMILY OF PRODUCTS

Databooks Part No Unit Cost
280 Family Datahook DC-8321-00 5.00
Discrete Z80® Family

78400/C00 NMOS/CMOS Z80® CPU Product Specification
78410/C10 NMOS/CMOS Z80 DMA Product Specification
78420/C20 NMOS/CMOS Z80 P10 Product Specification
78430/C30 NMOS/CMOS Z80 CTC Product Specification
78440/C40 NMOS/CMOS Z80 SI0 Product Specification
f Embedded Controllers
284C01 Z80 CPU with CGC Product Specification
78470 Z80 DART Product Specification
784C90 CMOS Z80 KIO™ Product Specification
' 784013/015 Z84C13/C15 IPC/EIPC Product Specification
| Application Notes and Technical Articles
| Z£80°® Family Interrupt Structure
| Using the Z80® SI0 with SDLC
i Using the Z80® SI0 in Asynchronous Communications
\ Binary Synchronous Communication Using the Z80® SI0
\ Serial Communication with the Z80A DART
Interfacing Z80® CPUs to the Z8500 Peripheral Family
Timing in an Interrupt-Based System with the Z80® CTC
A Z80-Based System Using the DMA with the SIO
Using the Z84C11/C13/C15 in Place of the Z84011/013/015
' On-Chip Oscillator Design
| A Fast Z80® Embedded Controller
‘ Z80® Questions and Answers
Additional Information
Zilog's Superintegration™ Products Guide
Literature Guide
Third Party Support Vendors
Zilog's Sales Offices, Representatives and Distributors

L-9

|

N 2iLa5 LITERATURE GUIDE

Z80°/Z8000° DATACOMMUNICATIONS FAMILY OF PRODUCTS

Databooks and User's Manuals

Part No

Unit Cost

Z8000 Family of Products
28000 Family Databook
Zilog's Z8000 Family Architecture
78001/28002 28000 CPU Product Specification
28016 28000 Z-DTC Product Specification
78036 78000 Z-CI0 Product Specification
28536 CI0 Counter/Timer and Parallel I/0 Unit Product Specification
! 78038/28538 F10 FIFO Input/Output Interface Unit Product Specification
| 28060/28560 FIFO Buffer Unit
‘ 78581 Clock Generator and Controller Product Specification
User's Manuals
78000 CPU Central Processing Unit User's Manual
28010 Memory Management Unit (MMU) User's Manual
78036 Z-C10/28536 CI0 Counter/Timer and Parallel Input/Output User's Manual
78038 Z8000 Z-FI0 FIFQ Input/Output Interface User's Manual
28000 Application Notes and Military Products
Application Notes
Using SCC with Z8000 in SDLC Protocol
SCC in Binary Synchronous Communication
| Zilog's Military Products Overview
Additional Information
Zilog's Superintegration™ Products Guide
Literature Guide
Zilog's Sales Offices, Representatives and Distributors

DC-8319-00

5.00

| 280 Family Technical Manual

280180 2180 MPU Microprocessor Unit Technical Manual

| Z280 MPU Microprocessor Unit Technical Manual

. 2380™ Preliminary Product Specification

' 380" User's Manual

| ZNW2000 User's Manual for PC WAN Adaptor Board Development Kit

DC-8309-00
DC-8276-04
DC-8224-03
DC-6003-03
DC-8297-03
DC-8315-00

5.00
5.00
5.00
N/C
5.00
N/C

' SCC Serial Communication Controller User's Manual
High-Speed SCC, Z16C30 USC User's Manual
High-Speed SCC, Z16C32 1USC User's Manual
216C35 ISCC Integrated Serial Communication Controller Technical Manual
216(35 ISCC Integrated Serial Communication Controller Addendum

DC-8293-02
DC-8280-04
DC-8292-02
DC-8286-01
DC-8286-01A

5.00
5.00
5.00
5.00
N/C

L-11

LITERATURE GUID

GENERAL LITERATURE
Catalogs, Handbooks, Product Flyers and Users Guides Part No Unit Cost
Superintegration Master Selection Guide 1994-1995 DC-5634-00 N/C
Superintegration Products Guide DC-5676-00 N/C
Quality and Reliability Report DC-8329-00 N/C
ZIA™ 3.3-5.5V Matched Chip Set for AT Hard Disk Drives Datasheet DC-5556-01 N/C
+ ZIA ZIADOZCO Disk Drive Development Kit Datasheet DC-5593-01 N/C
Zilog Hard Disk Controllers - Z86C93/C95 Datasheet DC-5560-01 N/C
Zilog Infrared (IR) Controllers - ZIRC™ Datasheet DC-5558-01 N/C
Zilog V. Fast Modem Controller Solutions DC-5525-02 N/C
Zilog Digital Signal Processing - Z89320 Datasheet DC-5547-01 N/C
Zilog Keyboard Controllers Datasheet DC-5600-01 N/C
2380™ - Next Generation Z80%/2180™ Datasheet DC-5580-02 N/C
Fault Tolerant Z8% Microcontroller Datasheet DC-5603-01 N/C
32K ROM Z8® Microcontrollers Datasheet DC-5601-01 N/C
Zilog Datacommunications Brochure DC-5519-00 N/C
289300 DTC Controller Family Brochure DC-5608-01 N/C
Zilog Digital Signal Processing Brochure DC-5536-02 N/C
Zilog ASSPs - Partnering With You Product Brochure DC-5553-01 N/C
Zilog Wireless Products Datasheet DC-5630-00 N/C
Zilog 28604 Cost Efficient Datasheet DC-5662-00 N/C
Zilog Chip Carrier Device Packaging Datashest DC-5672-00 N/C
Zilog Database of IR Codes Datasheet DC-5631-00 N/C
Zilog PCMCIA Adaptor Chip 286017 Datasheet DC-5585-01 N/C
- Zilog Television/Video Controllers Datasheet DC-5567-01 N/C
* Zilog TAD Controllers - Z89C65/C67/C69 Datasheet DC-5561-02 N/C
Zilog 287000 Z-Phone Datasheet DC-5632-00 D/C
Zilog 1993 Annual Report DC-1993-AR N/C
Zilog 1994 First Quarter Financial Report DC-1994-Q1 N/C

L-13

N 2iLa5

LITERATURE GUIDE

ORDERING
INFORMATION

Complete the attached literature order form. Be
sure to enclose the proper payment or supply a
purchase order. Please reference specific order
requirements.

MINIMUM ORDER
REQUIREMENTS

Orders under $300.00 must be prepaid by check,
money order or credit card. Canadian and for-
eign orders must be accompanied by a cashier's
checkin U.S. dollars, drawn on a correspondent
U.S. bank only.

Orders over $300.00 may be submitted with a
Purchase Order.

SHIPMENT

Orders will be shippedafteryour check s cashed
or credit is checked via the most economical
method. Please allow four weeks for delivery.

RETURNS ARE NOT ACCEPTED.

PLEASE PRINT OR TYPE
NAME PHONE () -
COMPANY Method of Payment (Check One)
| [Check I Money Order
'| ADDRESS Credit Card CIVISA I WC I P.O. (over $300.00)
CITY STATE ZIP COUNTRY
‘ PART NUMBER DOCUMENT TITLE UNIT COST QTY. TOTAL
| B -+ $ $
T3 1 $ $
; + + $ $
: T + $ $
: T =+ $ $
T - $ $
T - $ $
| -+ —+ $ $
4 4 $ $
4 4 $ $
+ 4 $ $
4 4 $ $
T -+ $ $
4 4 $ $
Mail To: Credit Card or Purchase Order # SUBTOTAL
@ ZiLm Expiration Date ADD APPLICABLE SALES TAX (CA ONLY)
210 E. HACIENDA AVE. M/S C1-0 Signature ADD 10% SHIPPING AND HANDLING
CAMPBELL, CA 95008-6600 TOTAL

Phone: (408)370-8016
Fax: (408)370-8056

/1
fexd
>
o
| ES——
o
RN
.
m

Rkl M o= |
P =

)) s - .
R 3 £ SUN| £ £ @ 9
,,,,, o & prory B e v [gcen]
) Pt et e lmM.J Mm,ﬁu e mwmww
= ofd e aE= < 2 H =
m..luuww ﬂ’-m.sw ﬂm‘,..:ruum "y r.ﬂhu amﬁuu ¥, .\uﬁﬁ!
= = = &= =] == &5 G
L e fore] Lo] 2

a9 B a9 €3 o @D £

prt4 = e S ¥

o3 o] = = portd nwu Lo
= 5 = =, & & £
[Pl] el AP RIS Sesd gy s
=d = CEC el e =
= : = 03 5g] &%

i
)
‘t&ﬂ

0

@ =]

2
{5

Y et arEes
Pd‘wu e ¥
foeas] fatad
¥ind

N 2iLa5

& Distributors

Zilog's Sales Offices
Representatives

ZILOG DOMESTIC SALES OFFICES

AND TECHNICAL CENTERS

CALIFORNIA

AQOUTE i 818-707-2160
Campbell.....408-370-8120
Irvine 714-453-9701
SaN DIEJO ..eevevreiririieineeterct et 619-658-0391
COLORADO

BOUIdETeviciireecce e 303-494-2905
FLORIDA

Clearwaterccoecveviereeieeiiere e 813-725-8400
GEORGIA

DUIULR o e 404-931-4022
ILLINOIS

Schaumburg ..o 708-517-8080
MINNESOTA

MINNeapolis ..., 612-944-0737
NEW HAMPSHIRE

NaShUAcoceivieiireee e 603-888-8590
OHIO

IndependencCecccevmvnveniiiineeneeneninn 216-447-1480
OREGON

POrtlandcoee e 503-274-6250
PENNSYLVANIA

HOrShamveviiresineencc e 215-784-0805
TEXAS

AUSEIN e e 512-343-8976
Dallascooveeieieieeecee s 214-987-9987

© 1994 by Zilog, Inc. All rights reserved. No part of this document
may be copied or reproduced in any form or by any means without
the prior written consent of Zilog, Inc. The information in this
documentis subjectto change without notice. Devices sold by Zilog,
Inc. are covered by warranty and patent indemnification provisions
appearing in Zilog, Inc. Terms and Conditions of Sale only. Zilog,
Inc. makes no warranty, express, statutory, implied or by descrip-
tion, regarding the information set forth herein or regarding the
freedom of the described devices fromintellectual property infringe-
ment. Zilog, Inc. makes no warranty of merchantability or fitness for
any purpose. Zilog, Inc. shall not be responsible for any errors that
may appear in this document. Zilog, Inc. makes no commitment to
update or keep current the information contained in this document.

INTERNATIONAL SALES OFFICES

CANADA

JL] (o] 0] (o T OO UUURRN 905-850-2377
CHINA

SheNzZhenccccvvieieiiieieecee e 86-755-2236089

Shanghai 86-21-4370050, x5204
86-21-4331020

GERMANY

MUNICH et 49-8967-2045

SOMMEIda.....ccveeeieiveeie et 49-3634-23906

JAPAN

TOKYO ottt 81-3-3587-0528

HONG KONG

KOWIOON vttt 852-7238979

KOREA

=701V | TSRO 82-2-577-3272

SINGAPORE

SINGAPOTE ..oovieireeriiirerree e 65-2357155

TAIWAN

TalIPEI .ovvvriiiiii 886-2-741-3125

UNITED KINGDOM

Maidenheadccccovvviivieniiiinnieriiene 44-628-392-00

Zilog's products are not authorized for use as critical components in
life support devices or systems unless a specific written agreement
pertaining to such intended use is executed between the customer
and Zilog prior to use. Life support devices or systems are those
which are intended for surgical implantation into the body, or which
sustains life whose failure to perform, when properly used in accor-
dance with instructions for use provided in the labeling, can be
reasonably expected to result in significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave.
Campbell, CA 95008-6600
Telephone (408) 370-8000

Telex 910-338-7621

FAX 408 370-8056

SALES REPRESENTATIVES AND DISTRIBUTORS

U.S., CANADIAN & PUERTO RICAN
REPRESENTATIVES

UTAH

Salt Lake City
Thorson Rocky Mountainccceeeveninnne (801) 942-1683

WASHINGTON

Kirkland
Phase Il Technical Salescc.cccceeennene (206) 823-3874

WISCONSIN

Brookfield
Victory Sales, INC. ...cccooevvvvircriincinene (414) 789-5770

CANADA

British Columbia
BBD Electronics, INC.ccceveenvnricriinnens (604) 465-4907

Ontario
BBD Electronics, INC.ccveeeeiinienineene (905) 821-7800

Ottawa
BBD Electronics, INC.cccevvreveininniinne (613) 764-1752

Quebec
BBD Electronics, INC.cccovvvvveveveevreeenne (514) 697-0801

PUERTO RICO

San Juan
Semtronic Associates, InC.c.ccceceeeneen (809) 766-0700

SOUTH AMERICAN REPRESENTATIVES

ARGENTINA

Buenos Aires
Parallax Sales & Distributioncocceveenee. (1) 372-7140

BRAZIL

Sao Paulo
Parallax Sales & Distributionc.c..... (11) 535-1755

SALES REPRESENTATIVES AND DISTRIBUTORS

U.S. AND CANADIAN DISTRIBUTORS

INDIANA

Indianapolis

Arrow EIectronicscccveeveveeeveenenne. 317) 299-2071

Hamilton Hallmark Electronics 317) 872-8875

800) 829-0146

IOWA

Cedar Rapids

Arrow EIBCtronicsc.cvvveeevvrenrciincinnae (319) 395-7230
KANSAS

Lenexa

Arrow EIECtronicscccceeevveveeeiveeneennin, 913) 541-9542

Hamilton Hallmark Electronics 913) 888-4747

800) 332-4375

KENTUCKY

Lexington

Hamilton Hallmark Electronics 2388} ggg-gggg
MARYLAND

Columbia

Anthem EIeCtronicsccoccevvveerinieeeinnne 410) 995-6640

Arrow Electronics (410) 596-7000

Hamilton Hallmark Electron .. (410) 988-9800
MASSACHUSETTS

Peabody

Hamilton Hallmark Electronics (508) 532-9808

Wilmington

Anthem EIeCtronicsccccecevvvecrveveennnn. 508) 657-5170

Arrow Electronicscceevvvevecvveeireccneens 508) 658-0900
MICHIGAN

Livonia

Arrow Electronicscccocviviinieniinnne, (313) 462-2290

Nori

Hamilton Hallmark Electronics (313) 347-4271

Plymouth

Hamilton Hallmark Electronics 8(1) 8; 471(13 ggggg
MINNESOTA

Bloomington .

Hamilton Hallmark Electronics (612) 881-2600

Eden Prairie

Anthem Electronics 612) 944-5454

Arrow Electronics 612) 941-5280

MISSOURI

Earth City

Hamilton Hallmark Electronics (814) 291-5350

St. Louis

Arrow EIectronicsccovvvveneeenneiniennenn (314) 567-6888
NEVADA

Sparks

Arrow Electronicsccoeeeevcenneiinenne. (702) 331-5000
NEW JERSEY

Cherry Hill

Hamilton Hallmark Electronics (609) 235-1900

Marlton

Arrow EIectronicsc.ccocevevincninnceennees (609) 596-8000

Pinebrook

Anthem Electronicscocevvvcciivnniinne, 201) 227-7960

Arrow Electronicscoccevvvieninininiciiniiins 201) 227-7880

Parsippany

Hamilton Hallmark Electronics (201) 575-4415
NEW YORK

Commack

Anthem Electronicsccoceveviviiniinnnne. (516) 864-6600

Hauppauge

Arrow Electronicscccveevcineiiiienennnn 516) 231-2500

Hamilton Hallmark Electronics 516) 737-0600

Melville

Arrow EleCtronicsccceeevvvvevcniieneanns (516) 391-1300

Rochester

Arrow Electronics e ?716; 427-0300

Hamilton Hallmark Electronics 716) 475-9130

Ronkonkoma

Hamilton Hallmark Electronics (516) 737-0600
NORTH CAROLINA

Raleigh

Arrow Electronicsc.ccceoveevevcircnnennee 919) 876-3132

Hamilton Hallmark Electronics 919) 872-0712

Z-5

SALES REPRESENTATIVES AND DISTRIBUTORS

CENTRAL AND SOUTH AMERICA

M§XICO BRAZIL
emiconductores Sao Paulo
Profesionales........c..coceevvevvveceninieciecneenne. 525-524-6123 i ohi _EE_11.63F-_
PIOYECCION EISGIONIGR oo E55.064-7482 NiShiCOM ...ooovviiiiiiiiiiiecercrece, 011-55-11-5635-1755
ARGENTINA
Buenos Aires
YEL SRL ..o 011-541-440-1532
|ASIA-PACIFIC
\
IAUSTRALIA JAPAN
R&D EIECtronicsoceevvevveevvecvureenrenreennns 61-3-558-0444 Tokyo
| GEC Electronics Divisionc.......... 61-2-638-1888 TekSel CO.. LtG. oo 81-3-5467-9000
| INtErNiX INCOTPOTALEU ovverrerrerrserrssmreos 81-3-3369-1101
|CHINA Kanematsu Elec. Components Corp...... 81-3-3779-7811
Beijing Osaka
Lestina International Ltd.c..ccocevveerennne 86-1ﬁ849é83(838 Teksel Co., Ltd. ..ccveevvieecieeeceeeeee s 81-6368-9000
m.
China Electronics Appliance Corp. 86-755-335-4214 KOREA
TLG Electronics, Ltd.oveveiniiiniinnns 85-2-388-7613 ENC-KOr€acosvvvreerrrrrreeressissnssinsenssnnnns 822-523-2220
Guang Zhou MALAYSIA
Lestina International Ltd.cccc....... 86-20-885-0613 i 3.
| 86.50-886.1615 Eltee Electronics Ltd.ccccovvvcinenninnnnne 60-3-7038498
NEW ZEALAND
| HONG KONG - L e
Iéclastina lntelr)nagon?l Il:tt g 325‘13?‘23 (7)22 GEC Electronics Divisionccccecevennneee. 64-25-971057
ectrocon Products s v -481- PHILIPPINES
INDIA Alexan Commercialc.ccceevvverervirineeneennns 63-2-402223
Bangalore
Zenith Technologies Pvt. Ltd. 91-812-586782 Slg?eg%%?:sonics Rt 65-2830888
Bombay
Zenith Technologies Pvt. Ltd. 91-22-4947457 TAIWAN (ROC)
\
Acer Sertek, INC. ...ccvevveereeieeierreene 886-2-501-0055
- INDONESIA Orchard Electronics Co. 886-2-504-7083
Jakarta Promate Electronics Co. Ltd. 886-2-659-0303
Cinergi ASiamaju........cceevevvevercecvenennens 62-21-7982762
THAILAND
Eltee Electronics Ltd.ccccovvvvriercnnenn. 66-2-538-4600

ISRAEL SPAIN
RDT ... 972'36450707 Barce’ona
.‘ ITALY AMItron-Arrow S.A.coovvivercecine e, 0034-3-4907494
Milano Maclid
D& MICO SPA.. oo 0039-295-343600 /\THIONAMOW SA. st 0034-1-3043040
EBV Elektronikccccovvveeveeneneniinnenns 0039-2-66017111 SWEDEN
Firenze Bexab Sweden ABccccevveveriniiinciennns 46-8-630-8800
EBV ElektroniK........ccccvvveeiiiieiiiecnvneenns 0039-55-350792
Roma SV;I.T?‘E{RLAND
EBV Elektronikccovveevvevveevvenreceeenne. 0039-6-22 7 ietikon
ektron! 035-6-2253367 £y Elekironik GMBH oo 0041-1-7401090
Modena Lausanne
LU= S —— 0039-59-344752 ERVERKTOnKAG ... 0041-21-5112804
Napoli , Regensdorf
EBV ElektroniKcocovvviiivniniinnen. 0039-81-2395540 EUTOAIS AG oo, 0041-1-8433111
| Torino
N ==V == RS 0039-11-2161531 UKRAINE
| Vicenza Kiev ,
EBV EIGKITONIK -.cvreverrcvcrrercnrce 0039-444-572366 TNOSYSIMIKIOPIIDOT oot 04434-9533
- NETHERLANDS
| EBV EIGKITONIK ..o.cvvveerreeerrienesivenessisessenans 313-46562353
|
' NORWAY
| Bexab NOrge.....cccooovevceneninieneienenennens 47-63833800
| POLAND
Warsaw
Gamma Ltd.ooeveeeeiiirieeee e, 004822-330853
PORTUGAL
Amadora
AMItroN-ArrOW.ccccveeeeeirieeecernreeeennnns 0035-1-4714806
RUSSIA
Woronesh
Thesys/Intertechna..........cocceeeviririincieniennens 0732593697
Vyborg
Gamma Ltd. ...cccoeeieeeeeeeeeee e, 081278-31509
St. Petersburg
Gamma Ltd. ...cccocveevieniiine e, 0812-5131402

Zilog, Inc.

210 East Hacienda Ave.
Campbell, CA 95008-6600
408-370-8000

